To go with Andrew's https://statmodeling.stat.columbia.edu/2017/05/19/continuous-hinge-function-bayesian-modeling/
Also includes alternate smoothers outside of logistic.
Used Claude (but verified).
data { | |
int<lower=0> N; | |
int<lower=0> D; | |
matrix[N, D] x; | |
array[N] int<lower=0, upper=1> y; | |
real<lower=0> h; | |
int<lower=0> B; | |
array[B] vector[D] beta0; |
#!/usr/bin/env python3 | |
import argparse | |
import json | |
import requests | |
import sys | |
from urllib.parse import quote | |
def parse_arguments(): | |
"""Parse command line arguments""" | |
parser = argparse.ArgumentParser(description="List Dataverse datasets owned by a user and convert to JSON") |
To go with Andrew's https://statmodeling.stat.columbia.edu/2017/05/19/continuous-hinge-function-bayesian-modeling/
Also includes alternate smoothers outside of logistic.
Used Claude (but verified).
#!/usr/bin/env python3 | |
""" | |
Dataverse File Uploader | |
A script to upload files to Harvard Dataverse or other Dataverse instances. | |
""" | |
import os | |
import argparse | |
import requests |
Scraping the abstracts for the discussion papers by i4replication.org.
------------- | |
set.seed(123) | |
# Step 1: Simulate Population | |
num_strata <- 10 # Number of strata | |
population_size <- 100000 # Total population size | |
# Generate strata sizes and proportions |
# Set random seed for reproducibility | |
set.seed(123) | |
# Time t parameters | |
n_novels_x_t <- 500 # 50% of 1000 novels are type x at time t | |
n_novels_y_t <- 500 | |
k <- 30 # 30% more likely to read type x | |
total_readings <- 800 # Fixed total reading capacity | |
# Time t simulation |