Created
December 26, 2018 11:27
-
-
Save stared/b598c03ade397baf3fa03c52bd79e90d to your computer and use it in GitHub Desktop.
delve
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#!/usr/bin/env python | |
import delve | |
import logging | |
import torch | |
import torch.nn as nn | |
from delve import CheckLayerSat | |
from torch.autograd import Variable | |
from tqdm import tqdm, trange | |
class TwoLayerNet(torch.nn.Module): | |
def __init__(self, D_in, H, D_out): | |
super(TwoLayerNet, self).__init__() | |
self.fc = torch.nn.Sequential( | |
torch.nn.Linear(D_in, H), | |
torch.nn.Linear(H, D_out) | |
) | |
def forward(self, x): | |
return self.fc(x) | |
cuda = torch.cuda.is_available() | |
torch.manual_seed(1) | |
for h in [3, 32, 128]: | |
# N is batch size; D_in is input dimension; | |
# H is hidden dimension; D_out is output dimension. | |
N, D_in, H, D_out = 64, 1000, h, 10 | |
# Create random Tensors to hold inputs and outputs | |
x = Variable(torch.randn(N, D_in)) | |
y = Variable(torch.randn(N, D_out)) | |
model = TwoLayerNet(D_in, H, D_out) | |
if cuda: | |
x, y, model = x.cuda(), y.cuda(), model.cuda() | |
layers = model.parameters() | |
stats = CheckLayerSat('regression/h{}'.format(h), layers) | |
loss_fn = torch.nn.MSELoss(size_average=False) | |
optimizer = torch.optim.SGD(model.parameters(), lr=1e-4, momentum=0.9) | |
steps_iter = trange(2000, desc='steps', leave=True, position=0) | |
steps_iter.write( | |
"{:^80}".format("Regression - TwoLayerNet - Hidden layer size {}".format(h)) | |
) | |
for i in steps_iter: | |
y_pred = model(x) | |
loss = loss_fn(y_pred, y) | |
steps_iter.set_description('loss=%g' % loss.data) | |
optimizer.zero_grad() | |
loss.backward() | |
optimizer.step() | |
stats.saturation() | |
steps_iter.write('\n') | |
stats.close() | |
steps_iter.close() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment