git clone [email protected]:filipstrand/mflux.git
cd mflux && pip install -r requirements.txt
Name this anything, maybe flux.py
. Make sure to update the two paths marked below.
git clone [email protected]:filipstrand/mflux.git
cd mflux && pip install -r requirements.txt
Name this anything, maybe flux.py
. Make sure to update the two paths marked below.
""" | |
A minimal, fast example generating text with Llama 3.1 in MLX. | |
To run, install the requirements: | |
pip install -U mlx transformers fire | |
Then generate text with: | |
python l3min.py "How tall is K2?" |
from great_tables import GT, md, html, system_fonts | |
import pandas as pd | |
power_cie_prepared_tbl = pd.read_csv("./data/2023_cie_power_cons.csv") | |
# Create a Great Tables object | |
ciep_gt_tbl = GT(data=power_cie_prepared_tbl) | |
# Apply wider color ranges & formatting | |
gt_tbl = ciep_gt_tbl \ |
from great_tables import GT, md, html, system_fonts | |
import pandas as pd | |
power_cie_prepared_tbl = pd.read_csv("./data/2023_cie_power_cons.csv") | |
# Create a Great Tables object | |
ciep_gt_tbl = GT(data=power_cie_prepared_tbl) | |
# Apply wider color ranges & formatting | |
gt_tbl = ciep_gt_tbl \ |
The LLaMA model weights may be converted from Huggingface PyTorch format back to GGML in two steps:
.pth
convert-pth-to-ggml.py
to convert from pytorch .pth
to GGMLThis process will result in ggml model with float16
(fp16
) precision.
# Sebastian Raschka 09/24/2022 | |
# Create a new conda environment and packages | |
# conda create -n whisper python=3.9 | |
# conda activate whisper | |
# conda install mlxtend -c conda-forge | |
# Install ffmpeg | |
# macOS & homebrew | |
# brew install ffmpeg | |
# Ubuntu |
# https://gist.github.com/althonos/6914b896789d3f2078d1e6237642c35c | |
[metadata] | |
name = {name} | |
version = file: {name}/_version.txt | |
author = Martin Larralde | |
author_email = [email protected] | |
url = https://github.com/althonos/{name} | |
description = {description} | |
long_description = file: README.md |
library(LaCroixColoR) | |
library(sf) | |
library(fasterize) | |
library(rayshader) | |
library(raster) | |
library(exactextractr) | |
library(rayrender) | |
# load raster into R | |
elevation <- raster("Olympus_Mons_ortho-image.tif") |