Skip to content

Instantly share code, notes, and snippets.

View takuseno's full-sized avatar
🤖
On research

Takuma Seno takuseno

🤖
On research
View GitHub Profile
@takuseno
takuseno / Dockerfile
Last active April 4, 2025 00:52
Dockerfile for development with unitree-rl-gym
FROM takuseno/unitree-rl-gym:latest
USER root
RUN apt-get update && apt-get install silversearcher-ag ripgrep libfuse2 fuse && \
wget https://github.com/neovim/neovim/releases/download/v0.9.0/nvim.appimage && \
chmod +x nvim.appimage && \
mkdir -p /usr/local/bin && \
mv nvim.appimage /usr/local/bin/nvim
USER gymuser
@takuseno
takuseno / Dockerfile
Last active April 4, 2025 00:52
Dockerfile for takuseno/unitree-rl-gym:latest
FROM takuseno/isaacgym:latest
RUN git clone https://github.com/leggedrobotics/rsl_rl /home/gymuser/rsl_rl && \
cd /home/gymuser/rsl_rl && \
git checkout v1.0.2 && \
pip install -e . && \
git clone https://github.com/unitreerobotics/unitree_rl_gym /home/gymuser/unitree_rl_gym && \
cd /home/gymuser/unitree_rl_gym && \
pip install -e . && \
pip install -U torch
@takuseno
takuseno / mic.py
Last active March 8, 2020 05:05
Minidora mic server
import pyaudio
import wave
import numpy as np
from socket import socket, AF_INET, SOCK_DGRAM
FORMAT = pyaudio.paInt32
CHANNELS = 1
RATE = 16000
CHUNK = 4096
ADDRESS = '192.168.11.7'
@takuseno
takuseno / nnabla_mlflow.py
Last active February 18, 2020 04:37
MLFlow autologging script for nnabla
import numpy as np
import mlflow
import gorilla
import time
from nnabla.monitor import Monitor, MonitorSeries, MonitorTimeElapsed
from mlflow.utils.autologging_utils import try_mlflow_log
import numpy as np
import nnabla as nn
import nnabla.functions as F
import nnabla.parametric_functions as PF
import nnabla.solvers as S
#------------------------------- neural network ------------------------------#
def q_network(obs, action):
with nn.parameter_scope('critic'):
@takuseno
takuseno / td3.py
Created June 8, 2019 06:02
Twin Delayed Deep Deterministic Policy Gradients (TD3) implementation with NNabla
import numpy as np
import nnabla as nn
import nnabla.functions as F
import nnabla.parametric_functions as PF
import nnabla.solvers as S
import argparse
import random
import os
import gym
@takuseno
takuseno / ddpg.py
Last active September 1, 2019 10:56
Deep Deterministic Policy Gradients implementation with NNabla
import numpy as np
import nnabla as nn
import nnabla.functions as F
import nnabla.parametric_functions as PF
import nnabla.solvers as S
import argparse
import random
import os
import gym
@takuseno
takuseno / dqn.py
Last active April 18, 2019 12:42
Deep Q-Network implementation with NNabla
import numpy as np
import nnabla as nn
import nnabla.parametric_functions as PF
import nnabla.functions as F
import nnabla.solvers as S
import random
import argparse
import gym
import os
import cv2
@takuseno
takuseno / gpu_info.py
Created October 10, 2018 04:03
Parse nvidia-smi by Python
from subprocess import Popen, PIPE
from xml.etree.ElementTree import fromstring
def main():
p = Popen(['nvidia-smi', '-q', '-x'], stdout=PIPE)
outs, errors = p.communicate()
xml = fromstring(outs)
num_gpus = int(xml.getiterator('attached_gpus')[0].text)
results = []
@takuseno
takuseno / reptile.py
Last active November 15, 2020 11:43
TensorFlow version of reptile sample https://blog.openai.com/reptile/
import numpy as np
import matplotlib.pyplot as plt
import tensorflow as tf
mode = 'maml'
seed = 0
plot = True
innerstepsize = 0.02 # stepsize in inner SGD
innerepochs = 1 # number of epochs of each inner SGD
outerstepsize0 = 0.1 if mode == 'reptile' else 0.001 # stepsize of outer optimization, i.e., meta-optimization