Created
September 1, 2019 12:12
-
-
Save takuseno/ec5342c9db5f10d04883df2fe83c5a68 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
import nnabla as nn | |
import nnabla.functions as F | |
import nnabla.parametric_functions as PF | |
import nnabla.solvers as S | |
#------------------------------- neural network ------------------------------# | |
def q_network(obs, action): | |
with nn.parameter_scope('critic'): | |
out = PF.affine(obs, 64, name='fc1') | |
out = F.tanh(out) | |
out = F.concatenate(out, action, axis=1) | |
out = PF.affine(out, 64, name='fc2') | |
out = F.tanh(out) | |
out = PF.affine(out, 1, name='fc3') | |
return out | |
def policy_network(obs, action_size): | |
with nn.parameter_scope('actor'): | |
out = PF.affine(obs, 64, name='fc1') | |
out = F.tanh(out) | |
out = PF.affine(out, 64, name='fc2') | |
out = F.tanh(out) | |
out = PF.affine(out, action_size, name='fc3') | |
return F.tanh(out) | |
#-----------------------------------------------------------------------------# | |
#-------------------------- DDPG algorithm -----------------------------------# | |
class DDPG: | |
def __init__(self, | |
obs_shape, | |
action_size, | |
batch_size, | |
critic_lr, | |
actor_lr, | |
tau, | |
gamma): | |
# inference | |
self.infer_obs_t = nn.Variable((1,) + obs_shape) | |
with nn.parameter_scope('trainable'): | |
self.infer_policy_t = policy_network(self.infer_obs_t, action_size) | |
# training | |
self.obs_t = nn.Variable((batch_size,) + obs_shape) | |
self.act_t = nn.Variable((batch_size, action_size)) | |
self.rew_tp1 = nn.Variable((batch_size, 1)) | |
self.obs_tp1 = nn.Variable((batch_size,) + obs_shape) | |
self.ter_tp1 = nn.Variable((batch_size, 1)) | |
# critic training | |
with nn.parameter_scope('trainable'): | |
q_t = q_network(self.obs_t, self.actions_t) | |
with nn.parameter_scope('target'): | |
policy_tp1 = policy_network(self.obs_tp1, action_size) | |
q_tp1 = q_network(self.obs_tp1, policy_tp1) | |
y = self.rew_tp1 + gamma * q_tp1 * (1.0 - self.ter_tp1) | |
self.critic_loss = F.mean(F.squared_error(q_t, y)) | |
# actor training | |
with nn.parameter_scope('trainable'): | |
policy_t = policy_network(self.obs_t, action_size) | |
q_t_with_actor = q_network(self.obs_t, policy_t) | |
self.actor_loss = -F.mean(q_t_with_actor) | |
# get neural network parameters | |
with nn.parameter_scope('trainable'): | |
with nn.parameter_scope('critic'): | |
critic_params = nn.get_parameters() | |
with nn.parameter_scope('actor'): | |
actor_params = nn.get_parameters() | |
# setup optimizers | |
self.critic_solver = S.Adam(critic_lr) | |
self.critic_solver.set_parameters(critic_params) | |
self.actor_solver = S.Adam(actor_lr) | |
self.actor_solver.set_parameters(actor_params) | |
with nn.parameter_scope('trainable'): | |
trainable_params = nn.get_parameters() | |
with nn.parameter_scope('target'): | |
target_params = nn.get_parameters() | |
# build target update | |
update_targets = [] | |
sync_targets = [] | |
for key, src in trainable_params.items(): | |
dst = target_params[key] | |
update_targets.append(F.assign(dst, (1.0 - tau) * dst + tau * src)) | |
sync_targets.append(F.assign(dst, src)) | |
self.update_target_expr = F.sink(*update_targets) | |
self.sync_target_expr = F.sink(*sync_targets) | |
def infer(self, obs_t): | |
self.infer_obs_t.d = np.array([obs_t]) | |
self.infer_policy_t.forward(clear_buffer=True) | |
return self.infer_policy_t.d[0] | |
def train_critic(self, obs_t, actions_t, rewards_tp1, obs_tp1, dones_tp1): | |
self.obs_t.d = np.array(obs_t) | |
self.act_t.d = np.array(actions_t) | |
self.rew_tp1.d = np.array(rewards_tp1) | |
self.obs_tp1.d = np.array(obs_tp1) | |
self.ter_tp1.d = np.array(dones_tp1) | |
self.critic_loss.forward() | |
self.critic_solver.zero_grad() | |
self.critic_loss.backward(clear_buffer=True) | |
self.critic_solver.update() | |
return self.critic_loss.d | |
def train_actor(self, obs_t): | |
self.obs_t.d = np.array(obs_t) | |
self.actor_loss.forward() | |
self.actor_solver.zero_grad() | |
self.actor_loss.backward(clear_buffer=True) | |
self.actor_solver.update() | |
return self.actor_loss.d | |
def update_target(self): | |
self.update_target_expr.forward(clear_buffer=True) | |
def sync_target(self): | |
self.sync_target_expr.forward(clear_buffer=True) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment