Last active
January 21, 2020 10:44
-
-
Save tamuhey/f7a93918bd6d226ed0434aaeef3c85d2 to your computer and use it in GitHub Desktop.
simple and efficient beamsearch function for pytorch
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import torch | |
def beamsearch(probs: torch.Tensor, k: int) -> torch.Tensor: | |
"""Beam search for sequential probabilities. | |
Args: | |
data: tensor of shape (length, d). requires d > 0. Assumed all items in `probs` in range [0, 1]. | |
k: beam width | |
Returns: (k, length) tensor | |
""" | |
assert len(probs.shape) == 2 | |
if len(probs) == 0: | |
return torch.zeros(k, 0) | |
# We calculate top k-th argmax of E = p0p1p2..pn-1. | |
# To avoid over(under)flow, evaluete log(E) instead of E. | |
# By doing this, E can be evaluated by addition. | |
data = probs.to(torch.double).log() | |
_, m = data.shape | |
scores, candidates = torch.topk(data[0], k=min(k, m)) | |
candidates = candidates[:, None] | |
for row in data[1:]: | |
z = (scores[:, None] + row[None, :]).flatten() | |
scores, flat_idx = torch.topk(z, k=min(k, len(z))) | |
i, j = flat_idx // m, flat_idx % m | |
candidates = torch.cat([candidates[i], j[:, None]], dim=-1) | |
return candidates | |
import hypothesis | |
@given( | |
st.integers(0, 200), | |
st.integers(1, 100), | |
st.integers(1, 10), | |
st.integers(-1000, 1000), | |
) | |
def test_beamsearch(n, m, k, s): | |
torch.manual_seed(s) | |
data = torch.randn(n, m).softmax(1) | |
output = beamsearch(data, k) | |
if n != 0: | |
assert output.shape == (min(m ** n, k), n) | |
assert all(output[0] == data.argmax(1)) | |
assert all(output[0] == beamsearch(data, 1)[0]) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment