Skip to content

Instantly share code, notes, and snippets.

@tennisonchan
Forked from dmmiller612/tensorflow_json.py
Created April 7, 2018 05:14
Show Gist options
  • Save tennisonchan/dd0fd4b092fd75b2c7e00156666a97d3 to your computer and use it in GitHub Desktop.
Save tennisonchan/dd0fd4b092fd75b2c7e00156666a97d3 to your computer and use it in GitHub Desktop.
Tensorflow Graph and weights to json and back for training
import tensorflow as tf
import numpy as np
from google.protobuf import json_format
import json
np.random.seed(12345)
def tensorflow_get_weights():
"""
@author https://github.com/maxim5 with code tweak for complete serialization
"""
vs = tf.trainable_variables()
values = tf.get_default_session().run(vs)
return values
def tensorflow_set_weights(weights):
"""
@author https://github.com/maxim5 with code tweak for complete serialization
"""
assign_ops = []
feed_dict = {}
vs = tf.trainable_variables()
zipped_values = zip(vs, weights)
for var, value in zipped_values:
value = np.asarray(value)
assign_placeholder = tf.placeholder(var.dtype, shape=value.shape)
assign_op = var.assign(assign_placeholder)
assign_ops.append(assign_op)
feed_dict[assign_placeholder] = value
tf.get_default_session().run(assign_ops, feed_dict=feed_dict)
def convert_weights_to_json(weights):
weights = [w.tolist() for w in weights]
weights_list = json.dumps(weights)
return weights_list
def convert_json_to_weights(json_weights):
loaded_weights = json.loads(json_weights)
loaded_weights = [np.asarray(x) for x in loaded_weights]
return loaded_weights
def create_simple_graph():
"""
Creates a very simple xor graph
"""
x = tf.placeholder(tf.float32, shape=[None, 2], name='x')
layer1 = tf.layers.dense(x, 12, activation=tf.nn.relu)
layer2 = tf.layers.dense(layer1, 7, activation=tf.nn.relu)
out = tf.layers.dense(layer2, 1, name='outer', activation=tf.nn.sigmoid)
opt = tf.train.AdamOptimizer(learning_rate=.01)
y = tf.placeholder(tf.float32, shape=[None, 1], name='y')
loss = tf.reduce_mean(tf.square(y - out))
mini = opt.minimize(loss, global_step=tf.train.get_or_create_global_step(), name='mini')
return mini
def retrieve_xor():
"""
Grabs xor data
"""
xor = [(0.0, np.array([0.0, 0.0])),
(0.0, np.array([1.0, 1.0])),
(1.0, np.array([1.0, 0.0])),
(1.0, np.array([0.0, 1.0]))]
a = np.asarray([x for y, x in xor])
b = np.asarray([y for y, _ in xor]).reshape((4, 1))
return a, b
def run_initial_with_json_weights(opti, feed_dict):
"""
returns both serialized json graph and weights
"""
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
for i in range(0, 100):
sess.run(opti, feed_dict=feed_dict)
first_weights = tensorflow_get_weights()
g = tf.get_default_graph().as_graph_def()
json_string = json_format.MessageToJson(g)
return json_string, convert_weights_to_json(first_weights)
def run_serialized(json_graph, json_weights, feed_dict):
"""
deserialize graph and run it again
"""
gd = tf.GraphDef()
gd = json_format.Parse(json_graph, gd)
weights = convert_json_to_weights(json_weights)
with tf.Session() as sess:
tf.import_graph_def(gd)
sess.run(tf.global_variables_initializer())
nu_out = tf.get_default_graph().get_tensor_by_name('outer/Sigmoid:0')
mini = tf.get_default_graph().get_tensor_by_name('mini:0')
tensorflow_set_weights(weights)
for i in range(0, 200):
sess.run(mini, feed_dict=feed_dict)
predicted = sess.run(nu_out, feed_dict=feed_dict)
return predicted
def run_with_serialized_weights():
"""
weights ARE turned into json
"""
initial_graph = create_simple_graph()
a,b = retrieve_xor()
feed_dict = {'x:0': a, 'y:0': b}
json_graph, json_weights = run_initial_with_json_weights(initial_graph, feed_dict)
predictions = run_serialized(json_graph, json_weights, feed_dict)
return predictions
if __name__ == "__main__":
print(run_with_serialized_weights())
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment