Created
February 5, 2014 21:06
-
-
Save teonbrooks/8833099 to your computer and use it in GitHub Desktop.
Checking Bad Channels
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
def check_bad_chs(self, threshold=0.05, reject=3e-12, n_chan=5): | |
""" | |
Check for flat-line channels or channels that repeatedly exceeded | |
threshold. | |
""" | |
ds = self.load_events(drop_bad_chs=False) | |
ds = ds[ds['experiment'] == 'fixation'] | |
threshold = ds.n_cases * threshold | |
epochs = E.load.fiff.mne_epochs(ds, tmin=-.2, tmax=.6, | |
drop_bad_chs=False, verbose=False, | |
baseline=(None, 0), preload=True, | |
reject={'mag': reject}) | |
if epochs.drop_log: | |
bads = E.Factor(sum(epochs.drop_log, [])) | |
bads = E.table.frequencies(bads) | |
bads = bads[bads['n'] > threshold]['cell'].as_labels() | |
else: | |
bads = [] | |
picks = mne.fiff.pick_types(epochs.info, exclude=[]) | |
data = epochs.get_data()[:, picks, :] | |
flats = [] | |
diffs = np.diff(data) == 0 | |
for epoch in diffs: | |
# channels flat > 50% time period | |
flats.append(np.where(np.mean(epoch, 1) >= .5)[0]) | |
flats = np.unique(np.hstack(flats)) | |
flats = ['MEG %03d' % (x + 1) for x in flats] | |
bad_chs = np.unique(np.hstack((bads, flats)).ravel()) | |
if len(bad_chs) > n_chan: | |
drop = 1 | |
else: | |
drop = 0 | |
with open(self.get('bads-file'), 'w') as FILE: | |
import datetime | |
date = datetime.datetime.now().ctime() | |
FILE.write('# Log of bad channels for %s written on %s\n\n' | |
% (self.get('subject'), date)) | |
FILE.write('bads=%s\n' % bad_chs) | |
FILE.write('drop=%s' % drop) | |
return bad_chs |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment