Created
April 22, 2020 14:03
-
-
Save thearn/27beebabb048f3df16f7be3e00bddc50 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
import openmdao.api as om | |
class SIRvec(om.ExplicitComponent): | |
"""Basic epidemiological infection model | |
S (suceptible), I (infected), R (recovered). | |
""" | |
def initialize(self): | |
self.options.declare('num_nodes', types=int) | |
self.options.declare('num_runs', types=int) | |
def setup(self): | |
nn = self.options['num_nodes'] | |
nr = self.options['num_runs'] | |
# States | |
self.add_input('S', | |
val=np.zeros((nr, nn))) | |
self.add_input('I', | |
val=np.zeros((nr, nn))) | |
self.add_input('R', | |
val=np.zeros((nr, nn))) | |
# ROCs | |
self.add_output('Sdot', val=np.zeros((nr, nn))) | |
self.add_output('Idot', val=np.zeros((nr, nn))) | |
self.add_output('Rdot', val=np.zeros((nr, nn))) | |
# Params | |
self.add_input('beta', | |
val = np.zeros((nr, nn))) | |
self.add_input('gamma', | |
val = np.zeros((nr, nn))) | |
#self.add_output('max_I', val=0.0) | |
#arange = np.arange(self.options['num_nodes'], dtype=int) | |
arange = np.arange(nn + nr, dtype=int) | |
self.declare_partials('Sdot', ['beta', 'gamma', 'S', 'I', 'R'], rows=arange, cols=arange) | |
self.declare_partials('Idot', ['beta', 'gamma', 'S', 'I', 'R'], rows=arange, cols=arange) | |
self.declare_partials('Rdot', ['gamma', 'I'], rows=arange, cols=arange) | |
#self.declare_partials('max_I', 'I') | |
def compute(self, inputs, outputs): | |
S = inputs['S'] | |
I = inputs['I'] | |
R = inputs['R'] | |
gamma = inputs['gamma'] | |
beta = inputs['beta'] | |
# time derivatives of the states of an SIR model | |
# substitution dynamic control 'beta' for constant 'beta'. | |
outputs['Sdot'] = - beta * S * I | |
outputs['Idot'] = beta * S * I - gamma * I | |
outputs['Rdot'] = gamma * I | |
def compute_partials(self, inputs, jacobian): | |
S = inputs['S'] | |
I = inputs['I'] | |
R = inputs['R'] | |
gamma = inputs['gamma'] | |
beta = inputs['beta'] | |
# derivatives of the ODE equations of state | |
jacobian['Sdot', 'S'] = (-I * beta).flatten() | |
jacobian['Sdot', 'I'] = (-S * beta).flatten() | |
jacobian['Sdot', 'beta'] = ( - S * I).flatten() | |
jacobian['Idot', 'gamma'] = (-I).flatten() | |
jacobian['Idot', 'S'] = I * (beta).flatten() | |
jacobian['Idot', 'I'] = S * (beta - gamma).flatten() | |
jacobian['Idot', 'beta'] = (S * I).flatten() | |
jacobian['Rdot', 'gamma'] = (I).flatten() | |
jacobian['Rdot', 'I'] = (gamma).flatten() | |
if __name__ == '__main__': | |
np.random.seed(0) | |
p = om.Problem() | |
p.model = om.Group() | |
nr = 4 | |
n = 35 | |
p.model.add_subsystem('test', SIRvec(num_nodes=n, num_runs=nr), promotes=['*']) | |
p.setup() | |
np.random.seed(0) | |
p['S'] = np.random.uniform(1, 1000, (nr, n)) | |
p['I'] = np.random.uniform(1, 1000, (nr, n)) | |
p['R'] = np.random.uniform(1, 1000, (nr, n)) | |
p['beta'] = np.random.uniform(0, 2, (nr, n)) | |
p['gamma'] = np.random.uniform(0, 2, (nr, n)) | |
#p['t'] = np.linspace(0, 100, n) | |
p.run_model() | |
x = p.check_partials(compact_print=True) | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment