Skip to content

Instantly share code, notes, and snippets.

View thearn's full-sized avatar

Tristan Hearn thearn

  • NASA Glenn Research Center
  • Cleveland, OH
View GitHub Profile
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import matplotlib
import random
import pickle
import matplotlib.dates as mdates
from matplotlib.ticker import LinearLocator
import numpy as np
import openmdao.api as om
class SIRvec(om.ExplicitComponent):
"""Basic epidemiological infection model
S (suceptible), I (infected), R (recovered).
"""
def initialize(self):
self.options.declare('num_nodes', types=int)
@thearn
thearn / vector.py
Created April 21, 2020 15:45
vectorized comp
import numpy as np
import openmdao.api as om
class SIRvec(om.ExplicitComponent):
"""Basic epidemiological infection model
S (suceptible), I (infected), R (recovered).
"""
def initialize(self):
self.options.declare('num_nodes', types=int)
4 21 894
419 794 987
424 797 125
651 305 558
655 631 963
2 628 436
736 50 363
657 707 408
252 705 98
532 173 878
from openmdao.core.explicitcomponent import ExplicitComponent
from openmdao.api import Problem, Group, ExecComp, IndepVarComp
from openmdao.devtools.generate_derivative import GenerateDerivative
class Paraboloid(ExplicitComponent):
"""
Evaluates the equation f(x,y) = (x-3)^2 + xy + (y+4)^2 - 3.
"""
import numpy as np
import matplotlib.pyplot as plt
from scipy.optimize import fmin, fminbound, fmin_bfgs
from scipy.misc import ascent
import pywt
from scipy.stats import kurtosis
true_image = ascent()
sigma = 25.0
test_image = true_image + sigma * np.random.randn(*true_image.shape)
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
from petsc4py import PETSc
rank = PETSc.COMM_WORLD.getRank()
num_ranks = PETSc.COMM_WORLD.getSize()
x = PETSc.Vec().createMPI(4) # VecCreateMPI: Creates a parallel vector. size=4
x.setValues([0,1,2,3], [10,20,30,40]) # VecSetValues: Inserts or adds values into certain locations of a vector. x[0]=10, x[1]=20, x[2]=30, x[3]=40
print ('Rank',rank,'has this portion of the MPI vector:', x.getArray() ) # VecGetArray: Returns a pointer to a contiguous array that contains this processor's portion of the vector data.
vec_sum = x.sum() # VecSum: Computes the sum of all the components of a vector. 10+20+30+40=100
import numpy as np
from openmdao.core.component import Component
from pycycle.constants import R_UNIVERSAL_ENG, MIN_VALID_CONCENTRATION
from openmdao.core.options import OptionsDictionary
from openmdao.components.indep_var_comp import IndepVarComp
from ad import adnumber
@thearn
thearn / implicit.py
Created February 8, 2016 20:53
working example
from openmdao.api import *
import numpy as np
"""
Test model:
-------------
Find value of state variable "x" such that the line 2*x + 1 has a specific
value of 'y1'
"""