Created
February 8, 2016 20:53
-
-
Save thearn/a553a1264836e853b189 to your computer and use it in GitHub Desktop.
working example
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from openmdao.api import * | |
import numpy as np | |
""" | |
Test model: | |
------------- | |
Find value of state variable "x" such that the line 2*x + 1 has a specific | |
value of 'y1' | |
""" | |
class MyState(Component): | |
def __init__(self): | |
super(MyState, self).__init__() | |
self.add_param("y1", np.pi) | |
self.add_param("y2", 0.0) | |
self.add_state("x", 1.0) | |
def solve_nonlinear(self,p,u,r): | |
pass | |
def apply_nonlinear(self, p, u, r): | |
r['x'] = p['y1'] - p['y2'] | |
def linearize(self, params, unknowns, resids): | |
J = {} | |
J['x','y1'] = 1.0 | |
J['x','y2'] = -1.0 | |
J['x', 'x'] = 0.0 | |
return J | |
class Intercept(Component): | |
def __init__(self): | |
super(Intercept, self).__init__() | |
self.add_param("x", 0.0) | |
self.add_output("y2", 1.0) | |
def solve_nonlinear(self, p, u, r): | |
u['y2'] = 2.0*p['x'] + 1.0 | |
def linearize(self, p, u, r): | |
return {('y2', 'x') : 2.0} | |
p = Problem() | |
p.root = Group() | |
p.root.add("state", MyState(), promotes=["*"]) | |
p.root.add("intercept", Intercept(), promotes=["*"]) | |
params = (('y1', np.pi),) | |
p.root.add("param", IndepVarComp(params), promotes=["*"]) | |
p.root.ln_solver = ScipyGMRES() | |
p.root.ln_solver.options['atol'] = 1e-8 | |
p.root.ln_solver.options['maxiter'] = 100 | |
p.root.ln_solver.options['restart'] = 100 | |
p.root.nl_solver = Newton() | |
p.root.nl_solver.options['rtol'] = 1.4e-8 | |
p.root.nl_solver.options['maxiter'] = 75 | |
p.root.nl_solver.options['iprint'] = 0 | |
p.setup() | |
p.run() | |
print "x, y1, y2:", p['x'], p['y1'], p['y2'] | |
p.check_partial_derivatives() | |
p.check_total_derivatives() | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment