Created
March 23, 2015 11:09
-
-
Save thvasilo/cd99709eacb44c8a8cff to your computer and use it in GitHub Desktop.
Simple job to ensure LZO compressed Google Ngrams data can be read
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import org.apache.spark._ | |
import org.apache.spark.SparkContext._ | |
import org.apache.spark.rdd.RDD | |
import scala.util.Random | |
import java.io._ | |
import java.util.Properties | |
import org.apache.hadoop.fs._; | |
import org.apache.hadoop.conf._; | |
import org.apache.hadoop.io._; | |
import org.apache.hadoop.mapred._; | |
import org.apache.hadoop.util._; | |
import com.hadoop.mapreduce.LzoTextInputFormat | |
import org.apache.hadoop.io.LongWritable | |
import org.apache.hadoop.io.Text | |
import org.apache.hadoop.mapred.SequenceFileInputFormat | |
import com.esotericsoftware.kryo.Kryo | |
import org.apache.spark.serializer.KryoRegistrator | |
class Registrator extends KryoRegistrator { | |
override def registerClasses(kryo: Kryo) { | |
kryo.register(classOf[LongWritable]) | |
kryo.register(classOf[Text]) | |
} | |
} | |
object TestNgrams { | |
def main(args: Array[String]) { | |
val conf = new SparkConf() | |
.setAppName("Google Ngrams Test") | |
.set("spark.serializer", "org.apache.spark.serializer.KryoSerializer") | |
.set("spark.kryo.registrator", classOf[Registrator].getName) | |
.set("spark.kryoserializer.buffer.mb", "128") | |
// .set("spark.shuffle.consolidateFiles", "true") | |
.set("spark.eventLog.enabled", "true") | |
.set("spark.eventLog.compress", "true") | |
val sc = new SparkContext(conf) | |
// This does not work: | |
// val lines = sc.hadoopFile[LongWritable, Text, SequenceFileInputFormat[LongWritable, Text]]( | |
// "s3n://datasets.elasticmapreduce/ngrams/books/20090715/eng-gb-all/1gram/data", minPartitions = 4) | |
// .map(_._2.toString) | |
// Neither does this: | |
// val lines = sc | |
// .newAPIHadoopFile("s3n://datasets.elasticmapreduce/ngrams/books/20090715/eng-gb-all/1gram/data", | |
// classOf[org.apache.hadoop.mapreduce.lib.input.SequenceFileInputFormat[LongWritable, Text]],//classOf[com.hadoop.mapreduce.LzoTextInputFormat], | |
// classOf[org.apache.hadoop.io.LongWritable], | |
// classOf[org.apache.hadoop.io.Text]) | |
// .map(_._2.toString) | |
// But this does: | |
val lines: RDD[String] = sc.sequenceFile( | |
"s3n://datasets.elasticmapreduce/ngrams/books/20090715/eng-gb-all/1gram/data", | |
classOf[org.apache.hadoop.io.LongWritable], | |
classOf[org.apache.hadoop.io.Text], minPartitions = 4) //Min-partitions should depend on the number or cores in your cluster | |
.map(_._2.toString) | |
val theCount = lines.count | |
val theFirst = lines.first | |
println("") | |
println(s"THE COUNT WAS: ${theCount}") | |
println(s"FIRST LINE: ${theFirst}") | |
println("") | |
sc.stop | |
} | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment