I hereby claim:
- I am thvasilo on github.
- I am tvas (https://keybase.io/tvas) on keybase.
- I have a public key whose fingerprint is BD7D 432D 4124 630C A4F2 061E 4AA5 5B32 660B 2CB2
To claim this, I am signing this object:
#!/usr/bin/env bash | |
set -Eeuo pipefail | |
trap cleanup SIGINT SIGTERM ERR EXIT | |
script_dir=$(cd "$(dirname "${BASH_SOURCE[0]}")" &>/dev/null && pwd -P) | |
usage() { | |
cat <<EOF | |
Usage: $(basename "${BASH_SOURCE[0]}") [-h] [-v] [-f] -p param_value arg1 [arg2...] |
# Script to set up the environment and files for training XGBoost jobs | |
# on the master of an MPI cluster created using AWS ParallelCluster | |
# Install personal choice packages | |
sudo apt install -y tmux emacs-nox htop parallel | |
# Needed for dmlc-core (?) | |
sudo apt install -y libcurl4-openssl-dev libssl-dev | |
# Parallel compress/decompress because we work with large bzipped files |
import argparse | |
import multiprocessing as mp | |
import os | |
from operator import itemgetter | |
from collections import Counter | |
import functools | |
import json | |
def parse_args(): |
==18350== Invalid free() / delete / delete[] / realloc() | |
==18350== at 0x4C2F74B: operator delete[](void*) (in /usr/lib/valgrind/vgpreload_memcheck-amd64-linux.so) | |
==18350== by 0x469786: datasketches::kll_sketch<float>::~kll_sketch() (kll_sketch.hpp:173) | |
==18350== by 0x4A0056: void std::_Destroy<datasketches::kll_sketch<float> >(datasketches::kll_sketch<float>*) (stl_construct.h:93) | |
==18350== by 0x494DF3: void std::_Destroy_aux<false>::__destroy<datasketches::kll_sketch<float>*>(datasketches::kll_sketch<float>*, datasketches::kll_sketch<float>*) (stl_construct.h:103) | |
==18350== by 0x4890D4: void std::_Destroy<datasketches::kll_sketch<float>*>(datasketches::kll_sketch<float>*, datasketches::kll_sketch<float>*) (stl_construct.h:126) | |
==18350== by 0x479AE0: void std::_Destroy<datasketches::kll_sketch<float>*, datasketches::kll_sketch<float> >(datasketches::kll_sketch<float>*, datasketches::kll_sketch<float>*, std::allocator<datasketches::kll_sketch<float> >&) (stl_construct.h:151) | |
==18350== by |
# My situation: I have a bunch of experiments nested under parameter dirs | |
# 10/ 20/ 30/ ... | |
# Each experiment dir has some experiment files, trailing _X indicates X repeat of experiment | |
# specific dataset | |
# ls 10/ | |
# dataset1_0.csv dataset2_0.csv dataset1_1.csv dataset2_1.csv | |
# Problem: I want to rename all the <datasetname>_1.csv files to <datasetname>_2.csv | |
# Solution: parallel & mmv! | |
# Use GNU parallel because it has a nicer syntax than bash for loops | |
parallel -j -q 2 mmv {1}/"*_1.csv" {1}/"#1_2.csv" ::: {10..100..10} |
# Benchmark for measuring matrix multiplication speed, Martin Nilsson, Rise SICS | |
# relevant for certain Machine Learning tasks v1.0 2017-11-21 | |
# v1.1 Theodore Vasiloudis (PyTortch solution) | |
# ==================================================== | |
# Run by: | |
# | |
# python3 multiplytest.py 10000 | |
# | |
# to measure squaring a 10000 x 10000 random matrix. | |
# Weirdly enough K80 and Titan X get different results prolly something to do with numerical accuracy. |
ID | EVENT | TIME | x | x.1 | |
---|---|---|---|---|---|
1 | 1 | 110.443671250798 | 0 | 0.88954899716191 | |
2 | 1 | 746.21020937277 | 1 | 0.85477636102587 | |
3 | 1 | 249.656292624447 | 0 | 1.19875323530287 | |
4 | 1 | 76.5375073833034 | 0 | 1.13521479736082 | |
5 | 1 | 68.3884146201972 | 1 | 0.866565287671983 | |
6 | 1 | 309.475210375677 | 0 | 0.832409728225321 | |
7 | 1 | 19.2999312165329 | 1 | 1.0273647472728 | |
8 | 0 | 1600.50948046765 | 1 | 0.750024672644213 | |
9 | 1 | 524.368976549325 | 0 | 1.26851084339432 |
/* | |
* Licensed to the Apache Software Foundation (ASF) under one or more | |
* contributor license agreements. See the NOTICE file distributed with | |
* this work for additional information regarding copyright ownership. | |
* The ASF licenses this file to You under the Apache License, Version 2.0 | |
* (the "License"); you may not use this file except in compliance with | |
* the License. You may obtain a copy of the License at | |
* | |
* http://www.apache.org/licenses/LICENSE-2.0 | |
* |
I hereby claim:
To claim this, I am signing this object:
import org.apache.spark._ | |
import org.apache.spark.SparkContext._ | |
import org.apache.spark.rdd.RDD | |
import scala.util.Random | |
import java.io._ | |
import java.util.Properties | |
import org.apache.hadoop.fs._; | |
import org.apache.hadoop.conf._; | |
import org.apache.hadoop.io._; |