-
-
Save tmramalho/5e8fda10f99233b2370f to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import theano | |
import theano.tensor as T | |
import numpy as np | |
import cPickle | |
import random | |
import matplotlib.pyplot as plt | |
class RNN(object): | |
def __init__(self, nin, n_hidden, nout): | |
rng = np.random.RandomState(1234) | |
W_uh = np.asarray( | |
rng.normal(size=(nin, n_hidden), scale= .01, loc = .0), dtype = theano.config.floatX) | |
W_hh = np.asarray( | |
rng.normal(size=(n_hidden, n_hidden), scale=.01, loc = .0), dtype = theano.config.floatX) | |
W_hy = np.asarray( | |
rng.normal(size=(n_hidden, nout), scale =.01, loc=0.0), dtype = theano.config.floatX) | |
b_hh = np.zeros((n_hidden,), dtype=theano.config.floatX) | |
b_hy = np.zeros((nout,), dtype=theano.config.floatX) | |
self.activ = T.nnet.sigmoid | |
lr = T.scalar() | |
u = T.matrix() | |
t = T.scalar() | |
W_uh = theano.shared(W_uh, 'W_uh') | |
W_hh = theano.shared(W_hh, 'W_hh') | |
W_hy = theano.shared(W_hy, 'W_hy') | |
b_hh = theano.shared(b_hh, 'b_hh') | |
b_hy = theano.shared(b_hy, 'b_hy') | |
h0_tm1 = theano.shared(np.zeros(n_hidden, dtype=theano.config.floatX)) | |
h, _ = theano.scan(self.recurrent_fn, sequences = u, | |
outputs_info = [h0_tm1], | |
non_sequences = [W_hh, W_uh, W_hy, b_hh]) | |
y = T.dot(h[-1], W_hy) + b_hy | |
cost = ((t - y)**2).mean(axis=0).sum() | |
gW_hh, gW_uh, gW_hy,\ | |
gb_hh, gb_hy = T.grad( | |
cost, [W_hh, W_uh, W_hy, b_hh, b_hy]) | |
self.train_step = theano.function([u, t, lr], cost, | |
on_unused_input='warn', | |
updates=[(W_hh, W_hh - lr*gW_hh), | |
(W_uh, W_uh - lr*gW_uh), | |
(W_hy, W_hy - lr*gW_hy), | |
(b_hh, b_hh - lr*gb_hh), | |
(b_hy, b_hy - lr*gb_hy)], | |
allow_input_downcast=True) | |
def recurrent_fn(self, u_t, h_tm1, W_hh, W_uh, W_hy, b_hh): | |
h_t = self.activ(T.dot(h_tm1, W_hh) + T.dot(u_t, W_uh) + b_hh) | |
return h_t | |
if __name__ == '__main__': | |
rnn = RNN(2, 20, 1) | |
lr = 0.01 | |
e = 1 | |
vals = [] | |
for i in xrange(int(5e5)): | |
u = np.random.rand(10,2) | |
t = np.dot(u[:,0], u[:,1]) | |
c = rnn.train_step(u, t, lr) | |
print "iteration {0}: {1}".format(i, np.sqrt(c)) | |
e = 0.1*np.sqrt(c) + 0.9*e | |
if i % 1000 == 0: | |
vals.append(e) | |
plt.plot(vals) | |
plt.savefig('plots/error.png') |
I believe it is, Just instead of the output at each stage being specified only the final output is given then the error is bptt.
What's the calculation in line 67 doing there?
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Is this actually an RNN and not a feed-forward network?