-
-
Save tmramalho/5e8fda10f99233b2370f to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import theano | |
import theano.tensor as T | |
import numpy as np | |
import cPickle | |
import random | |
import matplotlib.pyplot as plt | |
class RNN(object): | |
def __init__(self, nin, n_hidden, nout): | |
rng = np.random.RandomState(1234) | |
W_uh = np.asarray( | |
rng.normal(size=(nin, n_hidden), scale= .01, loc = .0), dtype = theano.config.floatX) | |
W_hh = np.asarray( | |
rng.normal(size=(n_hidden, n_hidden), scale=.01, loc = .0), dtype = theano.config.floatX) | |
W_hy = np.asarray( | |
rng.normal(size=(n_hidden, nout), scale =.01, loc=0.0), dtype = theano.config.floatX) | |
b_hh = np.zeros((n_hidden,), dtype=theano.config.floatX) | |
b_hy = np.zeros((nout,), dtype=theano.config.floatX) | |
self.activ = T.nnet.sigmoid | |
lr = T.scalar() | |
u = T.matrix() | |
t = T.scalar() | |
W_uh = theano.shared(W_uh, 'W_uh') | |
W_hh = theano.shared(W_hh, 'W_hh') | |
W_hy = theano.shared(W_hy, 'W_hy') | |
b_hh = theano.shared(b_hh, 'b_hh') | |
b_hy = theano.shared(b_hy, 'b_hy') | |
h0_tm1 = theano.shared(np.zeros(n_hidden, dtype=theano.config.floatX)) | |
h, _ = theano.scan(self.recurrent_fn, sequences = u, | |
outputs_info = [h0_tm1], | |
non_sequences = [W_hh, W_uh, W_hy, b_hh]) | |
y = T.dot(h[-1], W_hy) + b_hy | |
cost = ((t - y)**2).mean(axis=0).sum() | |
gW_hh, gW_uh, gW_hy,\ | |
gb_hh, gb_hy = T.grad( | |
cost, [W_hh, W_uh, W_hy, b_hh, b_hy]) | |
self.train_step = theano.function([u, t, lr], cost, | |
on_unused_input='warn', | |
updates=[(W_hh, W_hh - lr*gW_hh), | |
(W_uh, W_uh - lr*gW_uh), | |
(W_hy, W_hy - lr*gW_hy), | |
(b_hh, b_hh - lr*gb_hh), | |
(b_hy, b_hy - lr*gb_hy)], | |
allow_input_downcast=True) | |
def recurrent_fn(self, u_t, h_tm1, W_hh, W_uh, W_hy, b_hh): | |
h_t = self.activ(T.dot(h_tm1, W_hh) + T.dot(u_t, W_uh) + b_hh) | |
return h_t | |
if __name__ == '__main__': | |
rnn = RNN(2, 20, 1) | |
lr = 0.01 | |
e = 1 | |
vals = [] | |
for i in xrange(int(5e5)): | |
u = np.random.rand(10,2) | |
t = np.dot(u[:,0], u[:,1]) | |
c = rnn.train_step(u, t, lr) | |
print "iteration {0}: {1}".format(i, np.sqrt(c)) | |
e = 0.1*np.sqrt(c) + 0.9*e | |
if i % 1000 == 0: | |
vals.append(e) | |
plt.plot(vals) | |
plt.savefig('plots/error.png') |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
What's the calculation in line 67 doing there?