About Gist https://www.labnol.org/internet/github-gist-tutorial/28499/
(blog)SVMs
http://blog.hackerearth.com/simple-tutorial-svm-parameter-tuning-python-r
Background subtraction
https://github.com/stgstg27/Background-Subtraction
==Visualizaion==
Basic data visualization maps
https://mubaris.com/2017/09/26/introduction-to-data-visualizations-using-python/
More visualisation
https://github.com/ContextLab/storytelling-with-data/blob/master/data-stories/education/tutorial.ipynb
Visualisation with pandas
https://www.kaggle.com/residentmario/univariate-plotting-with-pandas/notebook
Average Precision as AU-PR curve
https://sanchom.wordpress.com/tag/average-precision/
https://medium.com/@jonathan_hui/map-mean-average-precision-for-object-detection-45c121a31173
==TSNE==
Misreading TSNE plots
https://distill.pub/2016/misread-tsne/
==CNN/DL==
SGD >> Adam for Generalisation:
https://arxiv.org/abs/1705.08292
CS231n Gradient check http://cs231n.github.io/neural-networks-3/#gradcheck
Open Images dataset maker https://github.com/aferriss/openImageDownloader
DL Mistakes http://ppwwyyxx.com/2017/Unawareness-Of-Deep-Learning-Mistakes/#more
Training classification network- kaggle10th https://towardsdatascience.com/image-classification-challenge-using-transfer-learning-and-deep-learning-studio-2e89c3189fcf
Kaggle4th classification tips https://www.kaggle.com/c/cdiscount-image-classification-challenge/discussion/45733
Kaggle #1 classification tips https://medium.com/neuralspace/kaggle-1-winning-approach-for-image-classification-challenge-9c1188157a86
Warm restarts paper https://arxiv.org/pdf/1608.03983.pdf
Optimal Learning rate https://towardsdatascience.com/estimating-optimal-learning-rate-for-a-deep-neural-network-ce32f2556ce0
Hyperparams https://towardsdatascience.com/artificial-intelligence-hyperparameters-48fa29daa516
On Convolutional NN
(blog)About CNN developments through the years- https://adeshpande3.github.io/adeshpande3.github.io/The-9-Deep-Learning-Papers-You-Need-To-Know-About.html
Understanding Convolutional operation in CNN- https://ujjwalkarn.me/2016/08/11/intuitive-explanation-convnets/
VIsualising MNIST & understanding Dimensionality Reduction http://colah.github.io/posts/2014-10-Visualizing-MNIST/
Lao ML notes http://claoudml.strikingly.com
Tfrecords https://planspace.org/20170323-tfrecords_for_humans/
https://planspace.org/20170403-images_and_tfrecords/
Google ML crash course https://developers.google.com/machine-learning/crash-course/ml-intro
(blog)R-CNN to Mask R-CNN https://blog.athelas.com/a-brief-history-of-cnns-in-image-segmentation-from-r-cnn-to-mask-r-cnn-34ea83205de4
(blog)Fast, Faster R-CNN https://tryolabs.com/blog/2018/01/18/faster-r-cnn-down-the-rabbit-hole-of-modern-object-detection/
https://jhui.github.io/2017/03/15/Fast-R-CNN-and-Faster-R-CNN/
(blog)RoI pooling https://blog.deepsense.ai/region-of-interest-pooling-explained/
(blog)Receptive field arithmetic https://medium.com/mlreview/a-guide-to-receptive-field-arithmetic-for-convolutional-neural-networks-e0f514068807
(SO answer) Anchors and faster-RCNN https://stats.stackexchange.com/questions/265875/anchoring-faster-rcnn
(SO Answer) Cnn filter weights initialization https://stats.stackexchange.com/questions/200513/how-to-initialize-the-elements-of-the-filter-matrix
(blog)cross entropy http://rdipietro.github.io/friendly-intro-to-cross-entropy-loss/
(article)Cross Entropy losses - categorical, focal https://gombru.github.io/2018/05/23/cross_entropy_loss/
(article)Transfer Learning/Fine tune CNN http://cs231n.github.io/transfer-learning/
(coursera)CNN/NMS/Object Detection https://www.coursera.org/learn/convolutional-neural-networks/lecture/dvrjH/non-max-suppression
(medium article)Image augmentation with tf https://medium.com/ymedialabs-innovation/data-augmentation-techniques-in-cnn-using-tensorflow-371ae43d5be9
Also an augmentor library https://github.com/mdbloice/Augmentor
On Bounding Box Regression https://pdxscholar.library.pdx.edu/cgi/viewcontent.cgi?article=4949&context=open_access_etds
Siamese Network Image similarity
Tensorflow series https://blog.metaflow.fr/tensorflow-a-primer-4b3fa0978be3
==PYTHON==
Python Tutorial https://www.python-course.eu/
Guide to import https://chrisyeh96.github.io/2017/08/08/definitive-guide-python-imports.html
Amazing things about python https://nedbatchelder.com/text/names.html https://stackoverflow.com/questions/5131538/slicing-a-list-in-python-without-generating-a-copy
Why self is here to stay http://neopythonic.blogspot.in/2008/10/why-explicit-self-has-to-stay.html
The init self confusion https://stackoverflow.com/questions/625083/python-init-and-self-what-do-they-do
(website)Learn Python http://python.net/~goodger/projects/pycon/2007/idiomatic/handout.html
==KAGGLE==
kaggle ensemble guide https://mlwave.com/kaggle-ensembling-guide/
(blog)Kaggle Zoo Solution http://benanne.github.io/2014/04/05/galaxy-zoo.html
Setting up the computer https://www.kaggle.com/c/allstate-claims-severity/discussion/26423#150025
Interesting thing about fully conv nets like Retinanet - resizing image during preprocessing (default 800x1333) -
check min side, if min size < 800 then upsample to 800 and note the scale, then scale max size with same scale, if this exceeds 1333 then scale to 1333 and note this new scale as final scale- finally resize image both sides with this final scale.
if min size > 800 then downsample to 800 and rest same procedure.
Basically, all images are squashed to this size