Host juwels
HostName juwels.fz-juelich.de
User salaj1
IdentityFile ~/.ssh/id_rsa_juwels.pub
To connect simply ssh juwels
.
// ==UserScript== | |
// @name ChatGPT CSS fixes | |
// @version 2025-04-24 | |
// @updateURL https://gist.github.com/alexchexes/d2ff0b9137aa3ac9de8b0448138125ce/raw/chatgpt_ui_fix.user.js | |
// @downloadURL https://gist.github.com/alexchexes/d2ff0b9137aa3ac9de8b0448138125ce/raw/chatgpt_ui_fix.user.js | |
// @namespace http://tampermonkey.net/ | |
// @description Adjusts width of side bar and messages of the ChatGPT web interface | |
// @author alexchexes | |
// @match https://chat.openai.com/* | |
// @match https://chatgpt.com/* |
#Rscript normalize_featurecounts.R counts_table.txt tpm ; | |
#Rscript normalize_featurecounts.R counts_table.txt rpkm ; | |
#Sample table### | |
#GeneID<TAB>sample1<TAB>sample2<TAB>sample3<TAB>Length | |
#Gene1<TAB>10<TAB>4<TAB>5<TAB>1500 | |
#Gene2<TAB>20<TAB>43<TAB>60<TAB>4300 | |
$ convert -density 200 INPUT.pdf -rotate 0.3 +noise Multiplicative -format pdf -quality 85 -compress JPEG -colorspace gray OUTPUT.pdf
import GEOparse | |
import pandas as pd | |
import matplotlib.pyplot as plt | |
import numpy | |
from matplotlib.backends.backend_pdf import PdfPages | |
#gseNums = ['GSE14860'] | |
#gseNums = ['GSE49278', 'GSE19750', 'GSE10846'] | |
gseNums = ['GSE19417', 'GSE49278', 'GSE19750', 'GSE10846', 'GSE39582', 'GSE35158', 'GSE19422', 'GSE19987', 'GSE32894', 'GSE35158', 'GSE27155', 'GSE33630', 'GSE56303', 'GSE29695', 'GSE10141', 'GSE9843', 'GSE25097', 'GSE32225', 'GSE26566', 'GSE65858', 'GSE39366', 'GSE22138', 'GSE46517', 'GSE71729', 'GSE8607', 'GSE4573', 'GSE29354', 'GSE71118', 'GSE19949', 'GSE15641', 'GSE26253', 'GSE15460', 'GSE21034', 'GSE9891', 'GSE32062', 'GSE72094', 'GSE26939', 'GSE29174', 'GSE31448', 'GSE45725', 'GSE40435', 'GSE14860'] |
library(data.table) | |
library(foreach) | |
args <- commandArgs(TRUE) | |
#### Input files #### | |
# Series Matrix File | |
SERIES_FILE <- args[1] | |
# Platform data table obtained from GEO. | |
PLATFORM_FILE <- args[2] |
A poker hand consists of 5 cards dealt at random without replacement from a standard deck of 52 cards of which 26 are red and the rest black. A poker hand is dealt. Find the chance that the hand contains three red cards and two black cards.
To achieve it, we use the [hypergeometric][1] probability mass function. We want 3 cards from the set of 26 red cards and 2 from the set of 26. So the parameters for the hypergeometric function are:
M = 52 # Total number of cards
n = 26 # Number of Type I cards (e.g. red cards)
N = 5 # Number of draws (5 cards dealt in one poker hand)
k = 3 # Number of Type I cards we want in one hand