Last active
November 15, 2022 08:48
-
-
Save uakihir0/bbb1bd8a4480e2bab07726ca0e744f91 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import argparse, os, sys, glob | |
import cv2 | |
import torch | |
import numpy as np | |
from omegaconf import OmegaConf | |
from PIL import Image | |
from tqdm import tqdm, trange | |
from itertools import islice | |
from einops import rearrange | |
from torchvision.utils import make_grid | |
import time | |
from pytorch_lightning import seed_everything | |
from torch import autocast | |
from contextlib import contextmanager, nullcontext | |
from ldm.util import instantiate_from_config | |
from ldm.models.diffusion.ddim import DDIMSampler | |
from ldm.models.diffusion.plms import PLMSSampler | |
# from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker | |
from transformers import AutoFeatureExtractor | |
def chunk(it, size): | |
it = iter(it) | |
return iter(lambda: tuple(islice(it, size)), ()) | |
def numpy_to_pil(images): | |
""" | |
Convert a numpy image or a batch of images to a PIL image. | |
""" | |
if images.ndim == 3: | |
images = images[None, ...] | |
images = (images * 255).round().astype("uint8") | |
pil_images = [Image.fromarray(image) for image in images] | |
return pil_images | |
def load_model_from_config(config, ckpt, verbose=False): | |
print(f"Loading model from {ckpt}") | |
pl_sd = torch.load(ckpt, map_location="cpu") | |
if "global_step" in pl_sd: | |
print(f"Global Step: {pl_sd['global_step']}") | |
sd = pl_sd["state_dict"] | |
model = instantiate_from_config(config.model) | |
m, u = model.load_state_dict(sd, strict=False) | |
if len(m) > 0 and verbose: | |
print("missing keys:") | |
print(m) | |
if len(u) > 0 and verbose: | |
print("unexpected keys:") | |
print(u) | |
model.cuda() | |
model.eval() | |
return model | |
def main(): | |
parser = argparse.ArgumentParser() | |
parser.add_argument( | |
"--prompt", | |
type=str, | |
nargs="?", | |
default="a painting of a virus monster playing guitar", | |
help="the prompt to render" | |
) | |
parser.add_argument( | |
"--outdir", | |
type=str, | |
nargs="?", | |
help="dir to write results to", | |
default="outputs/txt2img-samples" | |
) | |
parser.add_argument( | |
"--skip_grid", | |
action='store_true', | |
help="do not save a grid, only individual samples. Helpful when evaluating lots of samples", | |
) | |
parser.add_argument( | |
"--skip_save", | |
action='store_true', | |
help="do not save individual samples. For speed measurements.", | |
) | |
parser.add_argument( | |
"--ddim_steps", | |
type=int, | |
default=50, | |
help="number of ddim sampling steps", | |
) | |
parser.add_argument( | |
"--plms", | |
action='store_true', | |
help="use plms sampling", | |
) | |
parser.add_argument( | |
"--fixed_code", | |
action='store_true', | |
help="if enabled, uses the same starting code across samples ", | |
) | |
parser.add_argument( | |
"--ddim_eta", | |
type=float, | |
default=0.0, | |
help="ddim eta (eta=0.0 corresponds to deterministic sampling", | |
) | |
parser.add_argument( | |
"--n_iter", | |
type=int, | |
default=2, | |
help="sample this often", | |
) | |
parser.add_argument( | |
"--H", | |
type=int, | |
default=512, | |
help="image height, in pixel space", | |
) | |
parser.add_argument( | |
"--W", | |
type=int, | |
default=512, | |
help="image width, in pixel space", | |
) | |
parser.add_argument( | |
"--C", | |
type=int, | |
default=4, | |
help="latent channels", | |
) | |
parser.add_argument( | |
"--f", | |
type=int, | |
default=8, | |
help="downsampling factor", | |
) | |
parser.add_argument( | |
"--n_samples", | |
type=int, | |
default=3, | |
help="how many samples to produce for each given prompt. A.k.a. batch size", | |
) | |
parser.add_argument( | |
"--n_rows", | |
type=int, | |
default=0, | |
help="rows in the grid (default: n_samples)", | |
) | |
parser.add_argument( | |
"--scale", | |
type=float, | |
default=7.5, | |
help="unconditional guidance scale: eps = eps(x, empty) + scale * (eps(x, cond) - eps(x, empty))", | |
) | |
parser.add_argument( | |
"--from-file", | |
type=str, | |
help="if specified, load prompts from this file", | |
) | |
parser.add_argument( | |
"--config", | |
type=str, | |
default="configs/stable-diffusion/v1-inference.yaml", | |
help="path to config which constructs model", | |
) | |
parser.add_argument( | |
"--ckpt", | |
type=str, | |
default="models/ldm/stable-diffusion-v1/model.ckpt", | |
help="path to checkpoint of model", | |
) | |
parser.add_argument( | |
"--seed", | |
type=int, | |
default=42, | |
help="the seed (for reproducible sampling)", | |
) | |
parser.add_argument( | |
"--precision", | |
type=str, | |
help="evaluate at this precision", | |
choices=["full", "autocast"], | |
default="autocast" | |
) | |
opt = parser.parse_args() | |
seed_everything(opt.seed) | |
config = OmegaConf.load(f"{opt.config}") | |
model = load_model_from_config(config, f"{opt.ckpt}") | |
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu") | |
model = model.to(device) | |
if opt.plms: | |
sampler = PLMSSampler(model) | |
else: | |
sampler = DDIMSampler(model) | |
os.makedirs(opt.outdir, exist_ok=True) | |
outpath = opt.outdir | |
batch_size = opt.n_samples | |
n_rows = opt.n_rows if opt.n_rows > 0 else batch_size | |
if not opt.from_file: | |
prompt = opt.prompt | |
assert prompt is not None | |
data = [batch_size * [prompt]] | |
else: | |
print(f"reading prompts from {opt.from_file}") | |
with open(opt.from_file, "r") as f: | |
data = f.read().splitlines() | |
data = list(chunk(data, batch_size)) | |
sample_path = os.path.join(outpath, "samples") | |
os.makedirs(sample_path, exist_ok=True) | |
base_count = len(os.listdir(sample_path)) | |
grid_count = len(os.listdir(outpath)) - 1 | |
start_code = None | |
if opt.fixed_code: | |
start_code = torch.randn([opt.n_samples, opt.C, opt.H // opt.f, opt.W // opt.f], device=device) | |
precision_scope = autocast if opt.precision=="autocast" else nullcontext | |
with torch.no_grad(): | |
with precision_scope("cuda"): | |
with model.ema_scope(): | |
tic = time.time() | |
all_samples = list() | |
for n in trange(opt.n_iter, desc="Sampling"): | |
for prompts in tqdm(data, desc="data"): | |
uc = None | |
if opt.scale != 1.0: | |
uc = model.get_learned_conditioning(batch_size * [""]) | |
if isinstance(prompts, tuple): | |
prompts = list(prompts) | |
c = model.get_learned_conditioning(prompts) | |
shape = [opt.C, opt.H // opt.f, opt.W // opt.f] | |
samples_ddim, _ = sampler.sample(S=opt.ddim_steps, | |
conditioning=c, | |
batch_size=opt.n_samples, | |
shape=shape, | |
verbose=False, | |
unconditional_guidance_scale=opt.scale, | |
unconditional_conditioning=uc, | |
eta=opt.ddim_eta, | |
x_T=start_code) | |
x_samples_ddim = model.decode_first_stage(samples_ddim) | |
x_samples_ddim = torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0) | |
x_samples_ddim = x_samples_ddim.cpu().permute(0, 2, 3, 1).numpy() | |
x_checked_image = x_samples_ddim | |
x_checked_image_torch = torch.from_numpy(x_checked_image).permute(0, 3, 1, 2) | |
if not opt.skip_save: | |
for x_sample in x_checked_image_torch: | |
x_sample = 255. * rearrange(x_sample.cpu().numpy(), 'c h w -> h w c') | |
img = Image.fromarray(x_sample.astype(np.uint8)) | |
img.save(os.path.join(sample_path, f"{base_count:05}.png")) | |
base_count += 1 | |
if not opt.skip_grid: | |
all_samples.append(x_checked_image_torch) | |
if not opt.skip_grid: | |
# additionally, save as grid | |
grid = torch.stack(all_samples, 0) | |
grid = rearrange(grid, 'n b c h w -> (n b) c h w') | |
grid = make_grid(grid, nrow=n_rows) | |
# to image | |
grid = 255. * rearrange(grid, 'c h w -> h w c').cpu().numpy() | |
img = Image.fromarray(grid.astype(np.uint8)) | |
img.save(os.path.join(outpath, f'grid-{grid_count:04}.png')) | |
grid_count += 1 | |
toc = time.time() | |
print(f"Your samples are ready and waiting for you here: \n{outpath} \n" | |
f" \nEnjoy.") | |
if __name__ == "__main__": | |
main() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment