Last active
January 8, 2018 14:38
-
-
Save vogdb/f7d164788526a0f52c591db40eced705 to your computer and use it in GitHub Desktop.
a modified copy from https://gist.github.com/slarson/37463b35ef8606629d2e
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import scipy as sp | |
import pylab as plt | |
from scipy.integrate import odeint | |
from scipy import stats | |
import scipy.linalg as lin | |
## Full Hodgkin-Huxley Model (copied from Computational Lab 2) | |
# Constants | |
C_m = 1.0 # membrane capacitance, in uF/cm^2 | |
g_Na = 5.0 # maximum conducances, in mS/cm^2 | |
g_K = 30.0 | |
g_L = 0.2 | |
E_Na = 50.0 # Nernst reversal potentials, in mV | |
E_K = -80.0 | |
E_L = -70.0 | |
# Channel gating kinetics | |
# Functions of membrane voltage | |
def alpha_m(V): return 0.4 * (V + 66.0) / (1.0 - sp.exp(-(V + 66.0)/5.0)) | |
def beta_m(V): return 0.4 * (-(V + 32.0)) / (1.0 - sp.exp((V + 32.0)/5.0)) | |
def h_inf(V): return 1.0 / (1.0 + sp.exp((V + 65.0)/7.0)) | |
def h_tau(V): return 30.0 / (sp.exp((V + 60.0)/15.0) + sp.exp(-(V + 60.0)/16.0)) | |
def n_inf(V): return 1.0 / (1.0 + sp.exp(-(V + 38.0)/15.0)) | |
def n_tau(V): return 5.0/ (sp.exp((V + 50.0)/40.0) + sp.exp(-(V + 50.0)/50.0)) | |
# Membrane currents (in uA/cm^2) | |
# Sodium (Na = element name) | |
def I_Na(V,m,h):return g_Na * m**3 * h * (V - E_Na) | |
# Potassium (K = element name) | |
def I_K(V, n): return g_K * n**4 * (V - E_K) | |
# Leak | |
def I_L(V): return g_L * (V - E_L) | |
# External current | |
def I_inj(t): | |
return 7.0 # 7 uA/cm^2 | |
# The time to integrate over | |
t = sp.arange(0.0, 150.0, 0.1) | |
# Integrate! | |
def dALLdt(X, t): | |
V, m, h, n = X | |
#calculate membrane potential & activation variables | |
dVdt = (I_inj(t) - I_Na(V, m, h) - I_K(V, n) - I_L(V)) / C_m | |
dmdt = alpha_m(V)*(1.0-m) - beta_m(V)*m | |
dhdt = (h_inf(V) - h) / h_tau(V) | |
dndt = (n_inf(V) - n) / n_tau(V) | |
return dVdt, dmdt, dhdt, dndt | |
# X = odeint(dALLdt, [-65, 0.05, 0.6, 0.32], t) | |
X = odeint(dALLdt, [-65, alpha_m(-65)/(alpha_m(-65) + beta_m(-65)), h_inf(-65), n_inf(-65)], t) | |
V = X[:,0] | |
m = X[:,1] | |
h = X[:,2] | |
n = X[:,3] | |
ina = I_Na(V,m,h) | |
ik = I_K(V, n) | |
il = I_L(V) | |
plt.figure() | |
plt.subplot(4,1,1) | |
plt.title('Hodgkin-Huxley Neuron') | |
plt.plot(t, V, 'k') | |
plt.ylabel('V (mV)') | |
plt.subplot(4,1,2) | |
plt.plot(t, ina, 'c', label='$I_{Na}$') | |
plt.plot(t, ik, 'y', label='$I_{K}$') | |
plt.plot(t, il, 'm', label='$I_{L}$') | |
plt.ylabel('Current') | |
plt.legend() | |
plt.subplot(4,1,3) | |
plt.plot(t, m, 'r', label='m') | |
plt.plot(t, h, 'g', label='h') | |
plt.plot(t, n, 'b', label='n') | |
plt.ylabel('Gating Value') | |
plt.legend() | |
# plt.subplot(4,1,4) | |
# plt.plot(t, I_inj(t), 'k') | |
# plt.xlabel('t (ms)') | |
# plt.ylabel('$I_{inj}$ ($\\mu{A}/cm^2$)') | |
# plt.ylim(-1, 31) | |
plt.show() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment