Last active
May 5, 2016 14:17
-
-
Save werediver/10886388 to your computer and use it in GitHub Desktop.
ssa.sci ( https://gist.github.com/werediver/9785544 ) adapted for GNU Octave
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
% Force GNU Octave to interpret this file as a script | |
1; | |
function [y_out, m, sig] = ssa_normalize(y) | |
% http://en.wikipedia.org/wiki/Student%27s_t-statistic | |
m = mean(y); | |
sig = sqrt(variance(y)) % stdev(y); | |
y_out = (y - m) / sig; | |
endfunction | |
function [y_out] = ssa(y, L, I) | |
[LAMBDA, U, V] = ssa_decompose(y, L); | |
y_out = ssa_reconstruct(LAMBDA, U, V, I); | |
endfunction | |
function [LAMBDA, U, V, X] = ssa_decompose(y, L) | |
% y expected to be a column vector | |
% Stage 1: Decomposition | |
% Step 1: Embedding | |
N = length(y); | |
if (L > N / 2) | |
L = N - L; | |
end | |
K = N - L + 1; | |
% Time-delayed embedding of y, the trajectory matrix | |
X = zeros(L, K); | |
for i = 1 : K | |
X(:, i) = y(i : i + L - 1); | |
end | |
% Step 2: Singular value decomposition | |
% Direct approach | |
% _V will never be used | |
%[U, LAMBDA, _V] = svd(X) | |
%LAMBDA = diag(LAMBDA) | |
% Covariance matrix | |
C = X * X' / K; | |
% For stationary series | |
%C = toeplitz(corr(X, L)); | |
% _V will never be used | |
[U, LAMBDA, _V] = svd(C); | |
% The eigenvalues of C are the squared eigenvalues of X | |
LAMBDA = sqrt(diag(LAMBDA)); | |
% Principal components | |
V = X' * U; | |
for i = 1 : L | |
V(:, i) = V(:, i) / LAMBDA(i); | |
end | |
endfunction | |
function [y] = ssa_reconstruct(LAMBDA, U, V, I) | |
% I expected to be a row vector | |
[K, L] = size(V); | |
N = K + L - 1; | |
% Stage 2: Reconstruction | |
% Step 3: Grouping | |
for i = I | |
LAMBDA_U(:, i) = LAMBDA(i) * U(:, i); | |
end | |
% Reconstructed components | |
%X = LAMBDA_U(:, I) * V_transposed(I, :); | |
X = LAMBDA_U(:, I) * V(:, I)'; | |
% Step 4: Diagonal averaging | |
y = zeros(N, 1); | |
for i = 1 : K + L - 1 | |
v = adiag(X, i); | |
y(i) = sum(v) / length(v); | |
end | |
y = real(y); | |
endfunction | |
function [v] = adiag(x, z) | |
% 2D matrix antidiagonal | |
[N, M] = size(x); | |
% The total diagonals count | |
Z = N + M - 1; | |
% The current diagonal length | |
z_len = min([z, Z - z + 1, N, M]); | |
i = max([z, N * (z - N + 1)]); | |
step = N - 1; | |
v = x(i : step : i + step * z_len - 1); | |
endfunction |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment