Created
July 21, 2025 20:22
-
-
Save wheremyfoodat/4976a45094c5d5be228c3fe311b382b5 to your computer and use it in GitHub Desktop.
Jupyter Notebook for running CUDA kernels on Google Colab
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
// The notebook expects to load this CUDA kernel from the root of your Google Drive. | |
#include <cstdio> | |
#include <cstdlib> | |
#include <cuda_runtime.h> | |
__constant__ char d_message[64]; | |
__global__ void welcome(char* msg) { | |
int idx = blockIdx.x * blockDim.x + threadIdx.x; | |
msg[idx] = d_message[idx]; | |
} | |
void printErrors(const char* label) { | |
cudaError_t err = cudaGetLastError(); | |
if (err != cudaSuccess) { | |
std::fprintf(stderr, "%s: %s\n", label, cudaGetErrorString(err)); | |
} | |
} | |
int main() { | |
printf("Hello CUDA from CPU\n"); | |
char* d_msg; | |
char* h_msg; | |
const char message[] = "Hello CUDA from GPU!"; | |
const int length = strlen(message) + 1; | |
// Allocate host and device memory | |
h_msg = (char*)std::malloc(length * sizeof(char)); | |
cudaMalloc(&d_msg, length * sizeof(char)); | |
// Copy message to constant memory | |
cudaMemcpyToSymbol(d_message, message, length); | |
// Run CUDA kernel and wait till it's done | |
welcome<<<1, length>>>(d_msg); | |
printErrors("Kernel launch failed"); | |
// Copy result back to host | |
cudaMemcpy(h_msg, d_msg, length * sizeof(char), cudaMemcpyDeviceToHost); | |
h_msg[length-1] = '\0'; | |
printErrors("Device->Host memcpy failed"); | |
std::printf("%s\n", h_msg); | |
std::printf("Exiting kernel\n"); | |
// Cleanup | |
std::free(h_msg); | |
cudaFree(d_msg); | |
return 0; | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment