-
-
Save wiso/757e19a1be3f417904f59b77fa222014 to your computer and use it in GitHub Desktop.
Newton's optimization method for multivariate function in tensorflow (updated to tf 1.1.0)
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
import tensorflow as tf | |
# Newton's optimization method for multivariate function in tensorflow | |
def cons(x): | |
return tf.constant(x, dtype=tf.float32) | |
def compute_hessian(fn, vars): | |
mat = [] | |
for v1 in vars: | |
temp = [] | |
for v2 in vars: | |
temp.append(tf.gradients(tf.gradients(fn, v2)[0], v1)[0]) | |
temp = [cons(0) if t == None else t for t in temp] | |
temp = tf.stack(temp) | |
mat.append(temp) | |
mat = tf.stack(mat) | |
return mat | |
def compute_grads(fn, vars): | |
grads = [] | |
for v in vars: | |
grads.append(tf.gradients(fn, v)[0]) | |
return tf.reshape(tf.stack(grads), shape=[2, -1]) | |
def optimize(all_variables, update): | |
optmize_variables = [] | |
for i in range(len(all_variables)): | |
optmize_variables.append(all_variables[i].assign(all_variables[i] - alpha * tf.squeeze(update[i]))) | |
return tf.stack(optmize_variables) | |
x = tf.Variable(np.random.random_sample(), dtype=tf.float32) | |
y = tf.Variable(np.random.random_sample(), dtype=tf.float32) | |
alpha = cons(0.1) | |
# f = tf.pow(x, cons(2)) + cons(2) * x * y + cons(3) * tf.pow(y, cons(2)) + cons(4) * x + cons(5) * y + cons(6) | |
f = cons(0.5) * tf.pow(x, 2) + cons(2.5) * tf.pow(y, 2) | |
all_variables = [x, y] | |
hessian = compute_hessian(f, all_variables) | |
hessian_inv = tf.matrix_inverse(hessian) | |
g = compute_grads(f, all_variables) | |
update = tf.unstack(tf.matmul(hessian_inv, g)) | |
optimize_op = optimize(all_variables, update) | |
sess = tf.Session() | |
sess.run(tf.global_variables_initializer()) | |
func = np.inf | |
for i in range(10): | |
prev = func | |
v1, v2, func = sess.run([x, y, f]) | |
print v1, v2, func | |
sess.run(optimize_op) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment