Skip to content

Instantly share code, notes, and snippets.

@xoelop
Last active November 7, 2022 19:53
Show Gist options
  • Save xoelop/e67ff39ba77a2a09574ff58981e25cbe to your computer and use it in GitHub Desktop.
Save xoelop/e67ff39ba77a2a09574ff58981e25cbe to your computer and use it in GitHub Desktop.
Figure({
'data': [{'colorscale': 'Viridis',
'hoverinfo': 'text+name',
'name': 'Training set',
'showscale': False,
'text': array(['max_features: 0.05<br>n_estimators: 10<br>min_samples_split: 13<br>Test score: 0.8402<br>Train score: 0.9668<br>Fit time: 52.99s',
'max_features: 0.07<br>n_estimators: 10<br>min_samples_split: 13<br>Test score: 0.8845<br>Train score: 0.9715<br>Fit time: 74.24s',
'max_features: 0.09<br>n_estimators: 10<br>min_samples_split: 13<br>Test score: 0.8954<br>Train score: 0.9731<br>Fit time: 92.01s',
'max_features: 0.11<br>n_estimators: 10<br>min_samples_split: 13<br>Test score: 0.8851<br>Train score: 0.9758<br>Fit time: 116.09s',
'max_features: 0.13<br>n_estimators: 10<br>min_samples_split: 13<br>Test score: 0.8973<br>Train score: 0.9761<br>Fit time: 135.92s',
'max_features: 0.15<br>n_estimators: 10<br>min_samples_split: 13<br>Test score: 0.8631<br>Train score: 0.9772<br>Fit time: 153.26s',
'max_features: 0.17<br>n_estimators: 10<br>min_samples_split: 13<br>Test score: 0.9057<br>Train score: 0.9765<br>Fit time: 168.86s',
'max_features: 0.19<br>n_estimators: 10<br>min_samples_split: 13<br>Test score: 0.8878<br>Train score: 0.9783<br>Fit time: 178.27s',
'max_features: 0.21<br>n_estimators: 10<br>min_samples_split: 13<br>Test score: 0.8933<br>Train score: 0.9782<br>Fit time: 206.09s',
'max_features: 0.23<br>n_estimators: 10<br>min_samples_split: 13<br>Test score: 0.8972<br>Train score: 0.9769<br>Fit time: 218.22s',
'max_features: 0.25<br>n_estimators: 10<br>min_samples_split: 13<br>Test score: 0.8917<br>Train score: 0.98<br>Fit time: 246.6s',
'max_features: 0.05<br>n_estimators: 13<br>min_samples_split: 13<br>Test score: 0.8477<br>Train score: 0.9698<br>Fit time: 57.92s',
'max_features: 0.07<br>n_estimators: 13<br>min_samples_split: 13<br>Test score: 0.8705<br>Train score: 0.9727<br>Fit time: 80.66s',
'max_features: 0.09<br>n_estimators: 13<br>min_samples_split: 13<br>Test score: 0.8947<br>Train score: 0.9737<br>Fit time: 97.87s',
'max_features: 0.11<br>n_estimators: 13<br>min_samples_split: 13<br>Test score: 0.8851<br>Train score: 0.976<br>Fit time: 118.76s',
'max_features: 0.13<br>n_estimators: 13<br>min_samples_split: 13<br>Test score: 0.8913<br>Train score: 0.9761<br>Fit time: 139.33s',
'max_features: 0.15<br>n_estimators: 13<br>min_samples_split: 13<br>Test score: 0.8782<br>Train score: 0.9783<br>Fit time: 160.11s',
'max_features: 0.17<br>n_estimators: 13<br>min_samples_split: 13<br>Test score: 0.9032<br>Train score: 0.9772<br>Fit time: 174.05s',
'max_features: 0.19<br>n_estimators: 13<br>min_samples_split: 13<br>Test score: 0.8949<br>Train score: 0.9797<br>Fit time: 191.08s',
'max_features: 0.21<br>n_estimators: 13<br>min_samples_split: 13<br>Test score: 0.8969<br>Train score: 0.9794<br>Fit time: 209.02s',
'max_features: 0.23<br>n_estimators: 13<br>min_samples_split: 13<br>Test score: 0.9034<br>Train score: 0.9792<br>Fit time: 226.4s',
'max_features: 0.25<br>n_estimators: 13<br>min_samples_split: 13<br>Test score: 0.9036<br>Train score: 0.981<br>Fit time: 239.69s',
'max_features: 0.05<br>n_estimators: 18<br>min_samples_split: 13<br>Test score: 0.8403<br>Train score: 0.9706<br>Fit time: 73.46s',
'max_features: 0.07<br>n_estimators: 18<br>min_samples_split: 13<br>Test score: 0.8686<br>Train score: 0.9728<br>Fit time: 107.06s',
'max_features: 0.09<br>n_estimators: 18<br>min_samples_split: 13<br>Test score: 0.8827<br>Train score: 0.9748<br>Fit time: 129.65s',
'max_features: 0.11<br>n_estimators: 18<br>min_samples_split: 13<br>Test score: 0.8839<br>Train score: 0.9767<br>Fit time: 172.94s',
'max_features: 0.13<br>n_estimators: 18<br>min_samples_split: 13<br>Test score: 0.8798<br>Train score: 0.9766<br>Fit time: 197.42s',
'max_features: 0.15<br>n_estimators: 18<br>min_samples_split: 13<br>Test score: 0.8724<br>Train score: 0.9791<br>Fit time: 222.83s',
'max_features: 0.17<br>n_estimators: 18<br>min_samples_split: 13<br>Test score: 0.8907<br>Train score: 0.9779<br>Fit time: 247.6s',
'max_features: 0.19<br>n_estimators: 18<br>min_samples_split: 13<br>Test score: 0.8912<br>Train score: 0.9806<br>Fit time: 281.8s',
'max_features: 0.21<br>n_estimators: 18<br>min_samples_split: 13<br>Test score: 0.8906<br>Train score: 0.9796<br>Fit time: 300.77s',
'max_features: 0.23<br>n_estimators: 18<br>min_samples_split: 13<br>Test score: 0.8982<br>Train score: 0.9799<br>Fit time: 337.69s',
'max_features: 0.25<br>n_estimators: 18<br>min_samples_split: 13<br>Test score: 0.9068<br>Train score: 0.9809<br>Fit time: 380.08s',
'max_features: 0.05<br>n_estimators: 25<br>min_samples_split: 13<br>Test score: 0.8467<br>Train score: 0.9709<br>Fit time: 91.56s',
'max_features: 0.07<br>n_estimators: 25<br>min_samples_split: 13<br>Test score: 0.8773<br>Train score: 0.9746<br>Fit time: 139.87s',
'max_features: 0.09<br>n_estimators: 25<br>min_samples_split: 13<br>Test score: 0.8901<br>Train score: 0.9766<br>Fit time: 171.72s',
'max_features: 0.11<br>n_estimators: 25<br>min_samples_split: 13<br>Test score: 0.8866<br>Train score: 0.9774<br>Fit time: 216.12s',
'max_features: 0.13<br>n_estimators: 25<br>min_samples_split: 13<br>Test score: 0.8898<br>Train score: 0.9787<br>Fit time: 258.37s',
'max_features: 0.15<br>n_estimators: 25<br>min_samples_split: 13<br>Test score: 0.8805<br>Train score: 0.98<br>Fit time: 286.62s',
'max_features: 0.17<br>n_estimators: 25<br>min_samples_split: 13<br>Test score: 0.8865<br>Train score: 0.9792<br>Fit time: 328.54s',
'max_features: 0.19<br>n_estimators: 25<br>min_samples_split: 13<br>Test score: 0.89<br>Train score: 0.9816<br>Fit time: 351.1s',
'max_features: 0.21<br>n_estimators: 25<br>min_samples_split: 13<br>Test score: 0.8942<br>Train score: 0.9811<br>Fit time: 394.58s',
'max_features: 0.23<br>n_estimators: 25<br>min_samples_split: 13<br>Test score: 0.9014<br>Train score: 0.9814<br>Fit time: 425.26s',
'max_features: 0.25<br>n_estimators: 25<br>min_samples_split: 13<br>Test score: 0.9087<br>Train score: 0.9826<br>Fit time: 472.9s',
'max_features: 0.05<br>n_estimators: 33<br>min_samples_split: 13<br>Test score: 0.8562<br>Train score: 0.9721<br>Fit time: 124.93s',
'max_features: 0.07<br>n_estimators: 33<br>min_samples_split: 13<br>Test score: 0.8792<br>Train score: 0.9748<br>Fit time: 174.67s',
'max_features: 0.09<br>n_estimators: 33<br>min_samples_split: 13<br>Test score: 0.8884<br>Train score: 0.9772<br>Fit time: 224.43s',
'max_features: 0.11<br>n_estimators: 33<br>min_samples_split: 13<br>Test score: 0.8894<br>Train score: 0.9788<br>Fit time: 277.93s',
'max_features: 0.13<br>n_estimators: 33<br>min_samples_split: 13<br>Test score: 0.8922<br>Train score: 0.9791<br>Fit time: 319.38s',
'max_features: 0.15<br>n_estimators: 33<br>min_samples_split: 13<br>Test score: 0.8865<br>Train score: 0.9797<br>Fit time: 367.85s',
'max_features: 0.17<br>n_estimators: 33<br>min_samples_split: 13<br>Test score: 0.8895<br>Train score: 0.98<br>Fit time: 420.85s',
'max_features: 0.19<br>n_estimators: 33<br>min_samples_split: 13<br>Test score: 0.8935<br>Train score: 0.9822<br>Fit time: 460.53s',
'max_features: 0.21<br>n_estimators: 33<br>min_samples_split: 13<br>Test score: 0.9001<br>Train score: 0.9817<br>Fit time: 491.1s',
'max_features: 0.23<br>n_estimators: 33<br>min_samples_split: 13<br>Test score: 0.9046<br>Train score: 0.9815<br>Fit time: 539.83s',
'max_features: 0.25<br>n_estimators: 33<br>min_samples_split: 13<br>Test score: 0.9121<br>Train score: 0.983<br>Fit time: 608.67s',
'max_features: 0.05<br>n_estimators: 45<br>min_samples_split: 13<br>Test score: 0.8596<br>Train score: 0.971<br>Fit time: 154.62s',
'max_features: 0.07<br>n_estimators: 45<br>min_samples_split: 13<br>Test score: 0.878<br>Train score: 0.9744<br>Fit time: 221.65s',
'max_features: 0.09<br>n_estimators: 45<br>min_samples_split: 13<br>Test score: 0.8877<br>Train score: 0.9763<br>Fit time: 278.31s',
'max_features: 0.11<br>n_estimators: 45<br>min_samples_split: 13<br>Test score: 0.8873<br>Train score: 0.9778<br>Fit time: 349.56s',
'max_features: 0.13<br>n_estimators: 45<br>min_samples_split: 13<br>Test score: 0.8945<br>Train score: 0.9784<br>Fit time: 416.9s',
'max_features: 0.15<br>n_estimators: 45<br>min_samples_split: 13<br>Test score: 0.8936<br>Train score: 0.9793<br>Fit time: 452.08s',
'max_features: 0.17<br>n_estimators: 45<br>min_samples_split: 13<br>Test score: 0.8918<br>Train score: 0.98<br>Fit time: 535.46s',
'max_features: 0.19<br>n_estimators: 45<br>min_samples_split: 13<br>Test score: 0.8974<br>Train score: 0.9814<br>Fit time: 588.78s',
'max_features: 0.21<br>n_estimators: 45<br>min_samples_split: 13<br>Test score: 0.9026<br>Train score: 0.981<br>Fit time: 639.3s',
'max_features: 0.23<br>n_estimators: 45<br>min_samples_split: 13<br>Test score: 0.9013<br>Train score: 0.9809<br>Fit time: 677.62s',
'max_features: 0.25<br>n_estimators: 45<br>min_samples_split: 13<br>Test score: 0.9125<br>Train score: 0.9824<br>Fit time: 767.34s',
'max_features: 0.05<br>n_estimators: 60<br>min_samples_split: 13<br>Test score: 0.8602<br>Train score: 0.9708<br>Fit time: 205.42s',
'max_features: 0.07<br>n_estimators: 60<br>min_samples_split: 13<br>Test score: 0.8775<br>Train score: 0.9743<br>Fit time: 304.74s',
'max_features: 0.09<br>n_estimators: 60<br>min_samples_split: 13<br>Test score: 0.8868<br>Train score: 0.9764<br>Fit time: 369.89s',
'max_features: 0.11<br>n_estimators: 60<br>min_samples_split: 13<br>Test score: 0.888<br>Train score: 0.9781<br>Fit time: 465.4s',
'max_features: 0.13<br>n_estimators: 60<br>min_samples_split: 13<br>Test score: 0.892<br>Train score: 0.9786<br>Fit time: 563.21s',
'max_features: 0.15<br>n_estimators: 60<br>min_samples_split: 13<br>Test score: 0.8936<br>Train score: 0.979<br>Fit time: 611.84s',
'max_features: 0.17<br>n_estimators: 60<br>min_samples_split: 13<br>Test score: 0.8946<br>Train score: 0.9804<br>Fit time: 732.36s',
'max_features: 0.19<br>n_estimators: 60<br>min_samples_split: 13<br>Test score: 0.8986<br>Train score: 0.981<br>Fit time: 795.32s',
'max_features: 0.21<br>n_estimators: 60<br>min_samples_split: 13<br>Test score: 0.9033<br>Train score: 0.9807<br>Fit time: 859.53s',
'max_features: 0.23<br>n_estimators: 60<br>min_samples_split: 13<br>Test score: 0.9039<br>Train score: 0.9808<br>Fit time: 929.55s',
'max_features: 0.25<br>n_estimators: 60<br>min_samples_split: 13<br>Test score: 0.9107<br>Train score: 0.9819<br>Fit time: 1039.58s',
'max_features: 0.05<br>n_estimators: 81<br>min_samples_split: 13<br>Test score: 0.8621<br>Train score: 0.9718<br>Fit time: 276.86s',
'max_features: 0.07<br>n_estimators: 81<br>min_samples_split: 13<br>Test score: 0.873<br>Train score: 0.9757<br>Fit time: 395.98s',
'max_features: 0.09<br>n_estimators: 81<br>min_samples_split: 13<br>Test score: 0.8857<br>Train score: 0.9773<br>Fit time: 485.57s',
'max_features: 0.11<br>n_estimators: 81<br>min_samples_split: 13<br>Test score: 0.8882<br>Train score: 0.9792<br>Fit time: 620.52s',
'max_features: 0.13<br>n_estimators: 81<br>min_samples_split: 13<br>Test score: 0.8894<br>Train score: 0.9793<br>Fit time: 747.95s',
'max_features: 0.15<br>n_estimators: 81<br>min_samples_split: 13<br>Test score: 0.8941<br>Train score: 0.9804<br>Fit time: 839.08s',
'max_features: 0.17<br>n_estimators: 81<br>min_samples_split: 13<br>Test score: 0.8966<br>Train score: 0.9812<br>Fit time: 975.61s',
'max_features: 0.19<br>n_estimators: 81<br>min_samples_split: 13<br>Test score: 0.9001<br>Train score: 0.9814<br>Fit time: 1040.15s',
'max_features: 0.21<br>n_estimators: 81<br>min_samples_split: 13<br>Test score: 0.9027<br>Train score: 0.9814<br>Fit time: 1143.92s',
'max_features: 0.23<br>n_estimators: 81<br>min_samples_split: 13<br>Test score: 0.9029<br>Train score: 0.9816<br>Fit time: 1228.64s',
'max_features: 0.25<br>n_estimators: 81<br>min_samples_split: 13<br>Test score: 0.9098<br>Train score: 0.9821<br>Fit time: 1347.09s',
'max_features: 0.05<br>n_estimators: 110<br>min_samples_split: 13<br>Test score: 0.8641<br>Train score: 0.972<br>Fit time: 353.33s',
'max_features: 0.07<br>n_estimators: 110<br>min_samples_split: 13<br>Test score: 0.8744<br>Train score: 0.9759<br>Fit time: 512.47s',
'max_features: 0.09<br>n_estimators: 110<br>min_samples_split: 13<br>Test score: 0.8856<br>Train score: 0.9776<br>Fit time: 644.72s',
'max_features: 0.11<br>n_estimators: 110<br>min_samples_split: 13<br>Test score: 0.8908<br>Train score: 0.9795<br>Fit time: 795.06s',
'max_features: 0.13<br>n_estimators: 110<br>min_samples_split: 13<br>Test score: 0.8927<br>Train score: 0.9795<br>Fit time: 952.83s',
'max_features: 0.15<br>n_estimators: 110<br>min_samples_split: 13<br>Test score: 0.8904<br>Train score: 0.9805<br>Fit time: 1078.09s',
'max_features: 0.17<br>n_estimators: 110<br>min_samples_split: 13<br>Test score: 0.8959<br>Train score: 0.9813<br>Fit time: 1286.21s',
'max_features: 0.19<br>n_estimators: 110<br>min_samples_split: 13<br>Test score: 0.8982<br>Train score: 0.9817<br>Fit time: 1350.64s',
'max_features: 0.21<br>n_estimators: 110<br>min_samples_split: 13<br>Test score: 0.9036<br>Train score: 0.9817<br>Fit time: 1487.76s',
'max_features: 0.23<br>n_estimators: 110<br>min_samples_split: 13<br>Test score: 0.9034<br>Train score: 0.9816<br>Fit time: 1611.91s',
'max_features: 0.25<br>n_estimators: 110<br>min_samples_split: 13<br>Test score: 0.9104<br>Train score: 0.9823<br>Fit time: 1791.73s',
'max_features: 0.05<br>n_estimators: 148<br>min_samples_split: 13<br>Test score: 0.8684<br>Train score: 0.9719<br>Fit time: 460.18s',
'max_features: 0.07<br>n_estimators: 148<br>min_samples_split: 13<br>Test score: 0.8765<br>Train score: 0.9761<br>Fit time: 666.74s',
'max_features: 0.09<br>n_estimators: 148<br>min_samples_split: 13<br>Test score: 0.8844<br>Train score: 0.9773<br>Fit time: 837.5s',
'max_features: 0.11<br>n_estimators: 148<br>min_samples_split: 13<br>Test score: 0.8911<br>Train score: 0.9793<br>Fit time: 1042.58s',
'max_features: 0.13<br>n_estimators: 148<br>min_samples_split: 13<br>Test score: 0.8933<br>Train score: 0.9797<br>Fit time: 1231.15s',
'max_features: 0.15<br>n_estimators: 148<br>min_samples_split: 13<br>Test score: 0.8922<br>Train score: 0.9807<br>Fit time: 1423.29s',
'max_features: 0.17<br>n_estimators: 148<br>min_samples_split: 13<br>Test score: 0.8965<br>Train score: 0.9811<br>Fit time: 1637.45s',
'max_features: 0.19<br>n_estimators: 148<br>min_samples_split: 13<br>Test score: 0.8992<br>Train score: 0.9817<br>Fit time: 1786.73s',
'max_features: 0.21<br>n_estimators: 148<br>min_samples_split: 13<br>Test score: 0.903<br>Train score: 0.9819<br>Fit time: 1959.92s',
'max_features: 0.23<br>n_estimators: 148<br>min_samples_split: 13<br>Test score: 0.9041<br>Train score: 0.9819<br>Fit time: 2129.19s',
'max_features: 0.25<br>n_estimators: 148<br>min_samples_split: 13<br>Test score: 0.9089<br>Train score: 0.9824<br>Fit time: 2357.74s',
'max_features: 0.05<br>n_estimators: 200<br>min_samples_split: 13<br>Test score: 0.866<br>Train score: 0.9722<br>Fit time: 625.77s',
'max_features: 0.07<br>n_estimators: 200<br>min_samples_split: 13<br>Test score: 0.8765<br>Train score: 0.9757<br>Fit time: 908.82s',
'max_features: 0.09<br>n_estimators: 200<br>min_samples_split: 13<br>Test score: 0.8854<br>Train score: 0.9776<br>Fit time: 1142.49s',
'max_features: 0.11<br>n_estimators: 200<br>min_samples_split: 13<br>Test score: 0.8904<br>Train score: 0.9795<br>Fit time: 1431.86s',
'max_features: 0.13<br>n_estimators: 200<br>min_samples_split: 13<br>Test score: 0.8944<br>Train score: 0.9799<br>Fit time: 1675.47s',
'max_features: 0.15<br>n_estimators: 200<br>min_samples_split: 13<br>Test score: 0.895<br>Train score: 0.9808<br>Fit time: 1919.1s',
'max_features: 0.17<br>n_estimators: 200<br>min_samples_split: 13<br>Test score: 0.8985<br>Train score: 0.9813<br>Fit time: 2223.32s',
'max_features: 0.19<br>n_estimators: 200<br>min_samples_split: 13<br>Test score: 0.8992<br>Train score: 0.9818<br>Fit time: 2406.76s',
'max_features: 0.21<br>n_estimators: 200<br>min_samples_split: 13<br>Test score: 0.901<br>Train score: 0.982<br>Fit time: 2658.77s',
'max_features: 0.23<br>n_estimators: 200<br>min_samples_split: 13<br>Test score: 0.9039<br>Train score: 0.9821<br>Fit time: 2887.7s',
'max_features: 0.25<br>n_estimators: 200<br>min_samples_split: 13<br>Test score: 0.9082<br>Train score: 0.9828<br>Fit time: 3186.2s'],
dtype=object),
'type': 'surface',
'uid': '48fd9a4e-db8d-11e8-8974-4ff40e7498bf',
'x': array([ 10, 13, 18, 25, 33, 45, 60, 81, 110, 148, 200]),
'y': array([0.05, 0.07, 0.09, 0.11, 0.13, 0.15, 0.17, 0.19, 0.21, 0.23, 0.25]),
'z': array([[0.96680699, 0.97152872, 0.97314417, 0.97575797, 0.97612096,
0.97722048, 0.97646985, 0.97833885, 0.97820148, 0.97688056,
0.98004547],
[0.96980607, 0.97269584, 0.97372527, 0.9760482 , 0.97609485,
0.97833616, 0.9771606 , 0.97968266, 0.97943508, 0.97921244,
0.98099809],
[0.97055215, 0.97279498, 0.97476658, 0.97665907, 0.97658614,
0.97911488, 0.97791682, 0.9805811 , 0.97962508, 0.97987109,
0.98093828],
[0.97091143, 0.97457948, 0.97661518, 0.97738308, 0.97871159,
0.97996421, 0.97917187, 0.98159342, 0.98114922, 0.98139931,
0.98259005],
[0.97208957, 0.97483502, 0.97724809, 0.97878031, 0.97907435,
0.97966751, 0.97995064, 0.98215607, 0.98171969, 0.98154371,
0.98299628],
[0.97096128, 0.97443711, 0.9762983 , 0.97776981, 0.97842521,
0.97931626, 0.97995749, 0.98138763, 0.98098792, 0.98085748,
0.98237842],
[0.9708462 , 0.97433979, 0.97637901, 0.97813037, 0.97857149,
0.97899962, 0.98035594, 0.98101783, 0.98070201, 0.9808327 ,
0.98190503],
[0.97182049, 0.97566775, 0.97725974, 0.97919789, 0.97932573,
0.98035419, 0.98117928, 0.98144722, 0.98144804, 0.98160324,
0.98206631],
[0.97204664, 0.97592468, 0.97764585, 0.97950942, 0.97948477,
0.9805423 , 0.98130334, 0.98168294, 0.9817458 , 0.9816341 ,
0.98230026],
[0.97192614, 0.97608053, 0.97734685, 0.97926744, 0.97974034,
0.98070591, 0.98113295, 0.9817209 , 0.98194965, 0.98192466,
0.98244683],
[0.97224756, 0.97571329, 0.97758572, 0.97948588, 0.97987624,
0.980801 , 0.98128535, 0.98178913, 0.98204681, 0.98210741,
0.98283924]])},
{'colorscale': 'Viridis',
'name': 'Test set',
'showscale': False,
'type': 'surface',
'uid': '48fd9c74-db8d-11e8-8974-4ff40e7498bf',
'x': array([ 10, 13, 18, 25, 33, 45, 60, 81, 110, 148, 200]),
'y': array([0.05, 0.07, 0.09, 0.11, 0.13, 0.15, 0.17, 0.19, 0.21, 0.23, 0.25]),
'z': array([[0.84022655, 0.88446504, 0.89535942, 0.88507551, 0.89731167,
0.86308859, 0.90573573, 0.88784598, 0.89333981, 0.89716284,
0.89172436],
[0.84771444, 0.87045608, 0.89465801, 0.88506043, 0.89126857,
0.87818317, 0.90319254, 0.89485287, 0.8969236 , 0.90344044,
0.90364883],
[0.84025537, 0.86860543, 0.88273893, 0.88392371, 0.87975647,
0.87235116, 0.89065277, 0.89120126, 0.89061574, 0.8982235 ,
0.90682138],
[0.84670353, 0.87734515, 0.8901122 , 0.88662825, 0.88979889,
0.88045879, 0.88649132, 0.88995973, 0.89424238, 0.90135175,
0.90865698],
[0.8562052 , 0.87915271, 0.88840653, 0.88943025, 0.89221007,
0.88654077, 0.88948643, 0.89350519, 0.90007184, 0.9046149 ,
0.91207802],
[0.85961071, 0.87799621, 0.88770518, 0.88727051, 0.89445178,
0.89359003, 0.8918037 , 0.8973742 , 0.90256528, 0.90134123,
0.91251731],
[0.86023937, 0.87746964, 0.8867906 , 0.88797683, 0.89196292,
0.89356065, 0.89458518, 0.89856529, 0.90328209, 0.90393754,
0.91071098],
[0.86210086, 0.87303118, 0.88567079, 0.88822982, 0.88939342,
0.89408454, 0.8965654 , 0.90013369, 0.90270186, 0.90289215,
0.90980521],
[0.86407081, 0.87435972, 0.88559695, 0.89077329, 0.89270423,
0.89035798, 0.89590147, 0.89823525, 0.90356678, 0.90339192,
0.91038293],
[0.86842354, 0.87647814, 0.88437461, 0.89112264, 0.89330096,
0.89217885, 0.89650034, 0.89922221, 0.90301008, 0.90410985,
0.90894802],
[0.86595272, 0.876549 , 0.8853533 , 0.89043506, 0.89437312,
0.89502098, 0.89853994, 0.89924827, 0.90097723, 0.90389931,
0.90820799]])}],
'layout': {'height': 600,
'margin': {'b': 30, 'l': 30, 'r': 30, 't': 30},
'scene': {'aspectratio': {'x': 1, 'y': 1, 'z': 1},
'xaxis': {'title': 'param_n_estimators'},
'yaxis': {'title': 'param_max_features'},
'zaxis': {'title': 'R2 Score'}},
'title': 'R2 scores VS n_estimators and max_features',
'width': 960}
})
@LastWarr
Copy link

LastWarr commented Nov 7, 2022

Hi, I'm currently creating multiple 3d plots but i'm unable to display the hovertext with custom text can you please elaborate how you resolved this issue

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment