Dual boot Ubuntu 18.04 and Windows 10
Windows occupies an 128GB ssd for gaming Ubuntu occupies a 256GB ssd and two same 1TB hdd with raid0 grouped by [bcache][3].
| import gzip | |
| import logging | |
| import pickle | |
| import time | |
| import yaml | |
| from tqdm import tqdm | |
| def cached(cache_path): | |
| def wrapper(func): |
| import sys | |
| import fire | |
| class Beijing: | |
| max_base = 28221 | |
| min_base = 5360 | |
| def __init__(self, total): | |
| self.total = total | |
| def wuxianyijin(self): |
| ''' | |
| This proof-of-concept follows [PRML](https://www.microsoft.com/en-us/research/people/cmbishop/prml-book/)'s idea. | |
| This code extends plain HMM in the way that it has different transition matrix and emission matrix on different features `xs`. | |
| To get a normal HMM, you can set all `x` to the same. | |
| `HMM.predict()` uses formula (13.44) in PRML, which considers the whole seen sequence of observation `y`s. | |
| If you have no observed `y`s and only have `x`s, you can use `model.trans(x).view(T, N, self.H, self.H).softmax(dim=3)` as transition matrix to get predicted sequence. | |
| `gamma` here represents posterior probability of hidden states. | |
| ''' |
| from __future__ import print_function | |
| import argparse | |
| import torch | |
| import torch.nn as nn | |
| import torch.nn.functional as F | |
| import torch.optim as optim | |
| from torchvision import datasets, transforms | |
| import torchvision | |
| class Net(nn.Module): |
| import socket | |
| import time | |
| import copy | |
| import struct | |
| import socketserver | |
| import select | |
| ####################################################################### | |
| # package pyaes # | |
| ####################################################################### |
| #include <limits> | |
| #include <array> | |
| #include <cassert> | |
| #include <iostream> | |
| #include <string> | |
| #include <vector> | |
| #define MO 998244353 | |
| template <typename T, size_t rank> |
| import mxnet as mx | |
| from mxnet import nd, autograd | |
| from mxnet.gluon import nn | |
| from mxnet.gluon.contrib.nn import Identity, Concurrent | |
| from mxnet import gluon | |
| import logging | |
| def d(a, b): | |
| return (a - b).norm() |
| #! /bin/bash | |
| find -name '*.cpp' | sed -i 's/typeinfo\.h/typeinfo/g' | |
| find -name '*.h' | sed -i 's/typeinfo\.h/typeinfo/g' | |
| find -name '*.cpp' | python patch.py | |
| find -name '*.h' | python patch.py | |
| imps=$(find -name '*_implementation.h') |
| #include "showbits.h" | |
| #include <iostream> | |
| #include <algorithm> | |
| #include <string> | |
| #include <locale> | |
| #include <cassert> | |
| typedef union { | |
| int64_t i; |