Created
April 8, 2019 10:19
-
-
Save yuq-1s/75c0a0dfb08404cac0c897d1bcce4c5a to your computer and use it in GitHub Desktop.
mnist with naive binary-tree-like hierarchical softmax
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from __future__ import print_function | |
import argparse | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
import torch.optim as optim | |
from torchvision import datasets, transforms | |
import torchvision | |
class Net(nn.Module): | |
def __init__(self): | |
super(Net, self).__init__() | |
self.num_classes = 10 | |
# self.conv1 = nn.Conv2d(1, 20, 5, 1) | |
# self.conv2 = nn.Conv2d(20, 50, 5, 1) | |
# self.fc1 = nn.Linear(4*4*50, 500) | |
self.resnet = torchvision.models.__dict__['resnet152'](channels=1) | |
self.fc2 = nn.Linear(1000, self.num_classes-1) | |
def forward(self, x): | |
# x = F.relu(self.conv1(x)) | |
# x = F.max_pool2d(x, 2, 2) | |
# x = F.relu(self.conv2(x)) | |
# x = F.max_pool2d(x, 2, 2) | |
# x = x.view(-1, 4*4*50) | |
# x = F.relu(self.fc1(x)) | |
x = self.resnet(x) | |
x = self.fc2(x) | |
return F.logsigmoid(x) | |
# return F.log_softmax(x, dim=1) | |
def traverse_test(self, log_prob, i, accumulate_log_prob): | |
assert i >= 0 | |
assert len(log_prob.shape) == 1 | |
if i >= self.num_classes-1: | |
return accumulate_log_prob, i - self.num_classes + 1 | |
left_child = 2*i+1 | |
right_child = 2*i+2 | |
# import ipdb | |
# ipdb.set_trace() | |
if log_prob[i].exp() > 0.5: | |
lp = log_prob[i] | |
child = left_child | |
else: | |
lp = (1-log_prob[i].exp()).log() | |
child = right_child | |
next_log_prob = lp + accumulate_log_prob | |
# child = left_child if log_prob[i].exp() > 0.5 else right_child | |
return self.traverse_test(log_prob, child, next_log_prob) | |
def traverse_train(self, log_prob, i, accumulate_log_prob): | |
assert i < self.num_classes-1 and i >= 0 | |
assert len(log_prob.shape) == 1 | |
if i == 0: | |
return accumulate_log_prob + log_prob[0] | |
parent = (i-1) // 2 | |
assert i == 2*parent+1 or i == 2*parent+2 | |
lp = log_prob[parent] if i == 2*parent+1 else (1-log_prob[parent].exp()).log() | |
next_log_prob = lp + accumulate_log_prob | |
return self.traverse_train(log_prob, parent, next_log_prob) | |
def train(args, model, device, train_loader, optimizer, epoch): | |
model.train() | |
for batch_idx, (data, target) in enumerate(train_loader): | |
data, target = data.to(device), target.to(device) | |
optimizer.zero_grad() | |
output = model(data) | |
assert(len(target.shape) == 1) | |
parent = lambda x: (x-1)//2 | |
losses = [model.traverse_train( | |
output[i, :], parent(t+model.num_classes-1), 0) for i, t in enumerate(target)] | |
loss = -sum(losses) / len(losses) | |
# loss = F.nll_loss(output, target) | |
loss.backward() | |
optimizer.step() | |
if batch_idx % args.log_interval == 0: | |
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format( | |
epoch, batch_idx * len(data), len(train_loader.dataset), | |
100. * batch_idx / len(train_loader), loss.item())) | |
def test(args, model, device, test_loader): | |
model.eval() | |
test_loss = 0 | |
correct = 0 | |
with torch.no_grad(): | |
for data, target in test_loader: | |
data, target = data.to(device), target.to(device) | |
output = model(data) | |
loss, pred = zip(*[model.traverse_test(o, 0, 0) for o in output]) | |
for l in loss: | |
test_loss += l.item() | |
# test_loss += F.nll_loss(output, target, reduction='sum').item() # sum up batch loss | |
# pred = output.argmax(dim=1, keepdim=True) # get the index of the max log-probability | |
correct += target.eq(torch.tensor(pred).to(device)).sum().item() | |
# correct += pred.eq(target.view_as(pred)).sum().item() | |
test_loss /= len(test_loader.dataset) | |
print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format( | |
test_loss, correct, len(test_loader.dataset), | |
100. * correct / len(test_loader.dataset))) | |
def main(): | |
# Training settings | |
parser = argparse.ArgumentParser(description='PyTorch MNIST Example') | |
parser.add_argument('--batch-size', type=int, default=64, metavar='N', | |
help='input batch size for training (default: 64)') | |
parser.add_argument('--test-batch-size', type=int, default=1000, metavar='N', | |
help='input batch size for testing (default: 1000)') | |
parser.add_argument('--epochs', type=int, default=120, metavar='N', | |
help='number of epochs to train (default: 10)') | |
parser.add_argument('--lr', type=float, default=0.01, metavar='LR', | |
help='learning rate (default: 0.01)') | |
parser.add_argument('--momentum', type=float, default=0.5, metavar='M', | |
help='SGD momentum (default: 0.5)') | |
parser.add_argument('--no-cuda', action='store_true', default=False, | |
help='disables CUDA training') | |
parser.add_argument('--seed', type=int, default=1, metavar='S', | |
help='random seed (default: 1)') | |
parser.add_argument('--log-interval', type=int, default=10, metavar='N', | |
help='how many batches to wait before logging training status') | |
parser.add_argument('--save-model', action='store_true', default=False, | |
help='For Saving the current Model') | |
args = parser.parse_args() | |
use_cuda = not args.no_cuda and torch.cuda.is_available() | |
torch.manual_seed(args.seed) | |
device = torch.device("cuda" if use_cuda else "cpu") | |
kwargs = {'num_workers': 1, 'pin_memory': True} if use_cuda else {} | |
train_loader = torch.utils.data.DataLoader( | |
datasets.MNIST('../data', train=True, download=True, | |
transform=transforms.Compose([ | |
transforms.ToTensor(), | |
transforms.Normalize((0.1307,), (0.3081,)) | |
])), | |
batch_size=args.batch_size, shuffle=True, **kwargs) | |
test_loader = torch.utils.data.DataLoader( | |
datasets.MNIST('../data', train=False, transform=transforms.Compose([ | |
transforms.ToTensor(), | |
transforms.Normalize((0.1307,), (0.3081,)) | |
])), | |
batch_size=args.test_batch_size, shuffle=True, **kwargs) | |
model = Net().to(device) | |
optimizer = optim.SGD(model.parameters(), lr=args.lr, momentum=args.momentum) | |
for epoch in range(1, args.epochs + 1): | |
train(args, model, device, train_loader, optimizer, epoch) | |
test(args, model, device, test_loader) | |
if (args.save_model): | |
torch.save(model.state_dict(),"mnist_cnn.pt") | |
if __name__ == '__main__': | |
main() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment