-
-
Save Denbergvanthijs/7f6936ca90a683d37216fd80f5750e9c to your computer and use it in GitHub Desktop.
import numpy as np | |
screen_size = 40 | |
theta_spacing = 0.07 | |
phi_spacing = 0.02 | |
illumination = np.fromiter(".,-~:;=!*#$@", dtype="<U1") | |
A = 1 | |
B = 1 | |
R1 = 1 | |
R2 = 2 | |
K2 = 5 | |
K1 = screen_size * K2 * 3 / (8 * (R1 + R2)) | |
def render_frame(A: float, B: float) -> np.ndarray: | |
""" | |
Returns a frame of the spinning 3D donut. | |
Based on the pseudocode from: https://www.a1k0n.net/2011/07/20/donut-math.html | |
""" | |
cos_A = np.cos(A) | |
sin_A = np.sin(A) | |
cos_B = np.cos(B) | |
sin_B = np.sin(B) | |
output = np.full((screen_size, screen_size), " ") # (40, 40) | |
zbuffer = np.zeros((screen_size, screen_size)) # (40, 40) | |
cos_phi = np.cos(phi := np.arange(0, 2 * np.pi, phi_spacing)) # (315,) | |
sin_phi = np.sin(phi) # (315,) | |
cos_theta = np.cos(theta := np.arange(0, 2 * np.pi, theta_spacing)) # (90,) | |
sin_theta = np.sin(theta) # (90,) | |
circle_x = R2 + R1 * cos_theta # (90,) | |
circle_y = R1 * sin_theta # (90,) | |
x = (np.outer(cos_B * cos_phi + sin_A * sin_B * sin_phi, circle_x) - circle_y * cos_A * sin_B).T # (90, 315) | |
y = (np.outer(sin_B * cos_phi - sin_A * cos_B * sin_phi, circle_x) + circle_y * cos_A * cos_B).T # (90, 315) | |
z = ((K2 + cos_A * np.outer(sin_phi, circle_x)) + circle_y * sin_A).T # (90, 315) | |
ooz = np.reciprocal(z) # Calculates 1/z | |
xp = (screen_size / 2 + K1 * ooz * x).astype(int) # (90, 315) | |
yp = (screen_size / 2 - K1 * ooz * y).astype(int) # (90, 315) | |
L1 = (((np.outer(cos_phi, cos_theta) * sin_B) - cos_A * np.outer(sin_phi, cos_theta)) - sin_A * sin_theta) # (315, 90) | |
L2 = cos_B * (cos_A * sin_theta - np.outer(sin_phi, cos_theta * sin_A)) # (315, 90) | |
L = np.around(((L1 + L2) * 8)).astype(int).T # (90, 315) | |
mask_L = L >= 0 # (90, 315) | |
chars = illumination[L] # (90, 315) | |
for i in range(90): | |
mask = mask_L[i] & (ooz[i] > zbuffer[xp[i], yp[i]]) # (315,) | |
zbuffer[xp[i], yp[i]] = np.where(mask, ooz[i], zbuffer[xp[i], yp[i]]) | |
output[xp[i], yp[i]] = np.where(mask, chars[i], output[xp[i], yp[i]]) | |
return output | |
def pprint(array: np.ndarray) -> None: | |
"""Pretty print the frame.""" | |
print(*[" ".join(row) for row in array], sep="\n") | |
if __name__ == "__main__": | |
for _ in range(screen_size * screen_size): | |
A += theta_spacing | |
B += phi_spacing | |
print("\x1b[H") | |
pprint(render_frame(A, B)) |
like this:
import numpy as np
from time import sleep
import os
screen_size = 40
theta_spacing = 0.07
phi_spacing = 0.02
illumination = np.fromiter(".,-~:;=!*#$@", dtype="<U1")
A = 1
B = 1
R1 = 1
R2 = 2
K2 = 5
K1 = screen_size * K2 * 3 / (8 * (R1 + R2))
def render_frame(A: float, B: float) -> np.ndarray:
"""
Returns a frame of the spinning 3D donut.
Based on the pseudocode from: https://www.a1k0n.net/2011/07/20/donut-math.html
"""
cos_A = np.cos(A)
sin_A = np.sin(A)
cos_B = np.cos(B)
sin_B = np.sin(B)
output = np.full((screen_size, screen_size), " ") # (40, 40)
zbuffer = np.zeros((screen_size, screen_size)) # (40, 40)
cos_phi = np.cos(phi := np.arange(0, 2 * np.pi, phi_spacing)) # (315,)
sin_phi = np.sin(phi) # (315,)
cos_theta = np.cos(theta := np.arange(0, 2 * np.pi, theta_spacing)) # (90,)
sin_theta = np.sin(theta) # (90,)
circle_x = R2 + R1 * cos_theta # (90,)
circle_y = R1 * sin_theta # (90,)
x = (np.outer(cos_B * cos_phi + sin_A * sin_B * sin_phi, circle_x) - circle_y * cos_A * sin_B).T # (90, 315)
y = (np.outer(sin_B * cos_phi - sin_A * cos_B * sin_phi, circle_x) + circle_y * cos_A * cos_B).T # (90, 315)
z = ((K2 + cos_A * np.outer(sin_phi, circle_x)) + circle_y * sin_A).T # (90, 315)
ooz = np.reciprocal(z) # Calculates 1/z
xp = (screen_size / 2 + K1 * ooz * x).astype(int) # (90, 315)
yp = (screen_size / 2 - K1 * ooz * y).astype(int) # (90, 315)
L1 = (((np.outer(cos_phi, cos_theta) * sin_B) - cos_A * np.outer(sin_phi, cos_theta)) - sin_A * sin_theta) # (315, 90)
L2 = cos_B * (cos_A * sin_theta - np.outer(sin_phi, cos_theta * sin_A)) # (315, 90)
L = np.around(((L1 + L2) * 8)).astype(int).T # (90, 315)
mask_L = L >= 0 # (90, 315)
chars = illumination[L] # (90, 315)
for i in range(90):
mask = mask_L[i] & (ooz[i] > zbuffer[xp[i], yp[i]]) # (315,)
zbuffer[xp[i], yp[i]] = np.where(mask, ooz[i], zbuffer[xp[i], yp[i]])
output[xp[i], yp[i]] = np.where(mask, chars[i], output[xp[i], yp[i]])
return output
def pprint(array: np.ndarray) -> None:
"""Pretty print the frame."""
print(*[" ".join(row) for row in array], sep="\n")
if name == "main":
for _ in range(screen_size * screen_size):
A += theta_spacing
B += phi_spacing
print("\x1b[H")
os.system('cls')
pprint(render_frame(A, B))
sleep(0.05)
using os library.It better