Skip to content

Instantly share code, notes, and snippets.

View KMarkert's full-sized avatar
👨‍💻

Kel Markert KMarkert

👨‍💻
View GitHub Profile
using EarthEngine
Initialize()
# base ndvi function to do the calculation
function ndvi(n::EE.AbstractEEObject, r::EE.AbstractEEObject)
return (n - r) / (n + r)
end
# ndvi function for image, will extract out the correct bands
@KMarkert
KMarkert / julia_colab_notebook_earthengine.ipynb
Last active November 18, 2021 21:52
Julia_EarthEngine_GeoforGood21_Demo.ipynb
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
@KMarkert
KMarkert / silvacarbon-gee-tensorflow.ipynb
Created September 22, 2020 15:05
silvacarbon-gee-tensorflow.ipynb
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
@KMarkert
KMarkert / 1-tf2-0-beginner-cnn.ipynb
Last active September 22, 2020 14:17
Beginning_CNN_MNIST.ipynb
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
using PyCall, JSON, Images, Plots
# import gcloud authentication packages for interacting with the EE REST API
service_account = pyimport("google.oauth2.service_account");
gauth = pyimport("google.auth.transport.requests");
# path to service account secret key
# see the folowing link for details to key:
# https://developers.google.com/earth-engine/reference/Quickstart#obtain-a-private-key-file-for-your-service-account
SECRET_KEY = "<PATH_TO_SECRET_KEY>"
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
using PyCall, Plots, Colors, FileIO;
# import the ee Python module into Julia
# and initialize the EE API
ee = pyimport("ee");
ee.Initialize();
# produce tabular data that can be plotted by data visualization in Julia
# Fetch a Landsat image.
img = ee.Image("LANDSAT/LT05/C01/T1_SR/LT05_034033_20000913");
using PyCall, Plots;
theme(:bright);
# import the ee Python module into Julia
# and initialize the EE API
ee = pyimport("ee");
ee.Initialize();
# produce tabular data that can be plotted by data visualization in Julia
# Fetch a Landsat image.
using PyCall;
# import the ee Python module into Julia
# and initialize the EE API
ee = pyimport("ee");
ee.Initialize();
# load in ee.Image and sample a point
dem = ee.Image("USGS/SRTMGL1_003");
xy = ee.Geometry.Point([86.9250, 27.9881]...);
using PyCall;
# import the ee Python module into Julia
# and initialize the EE API
ee = pyimport("ee");
ee.Initialize();
# load in ee.Image and sample a point
dem = ee.Image("USGS/SRTMGL1_003");
xy = ee.Geometry.Point([86.9250, 27.9881]...);