Instalar o Anaconda com Python 3.7:
- Acessar o link da instalação: https://www.anaconda.com/distribution/#download-section
- Selecionar o seu sistema operacional:
- Abaixo de Python 3.7 Version, clicar em Download:
Instalar o Anaconda com Python 3.7:
| # envolveu a combinação de encoding e o separador: | |
| url_bernardo = 'https://raw.githubusercontent.com/beloureiro/Planning/main/DB11FB06-1447-11EB-AD05-1866DA94328D.csv' | |
| df = pd.read_csv(url_bernardo, sep=';', encoding='latin') |
| <link rel="stylesheet" type="text/css" href="https://cdn.rawgit.com/bmabey/pyLDAvis/files/ldavis.v1.0.0.css"> | |
| <div id="ldavis_el65140446592215944742620371"></div> | |
| <script type="text/javascript"> | |
| var ldavis_el65140446592215944742620371_data = {"mdsDat": {"x": [-0.13990785077723894, -0.09679313042303961, 0.08372094501590253, 0.07604489996546725, 0.08866863335149071, -0.01173349713258175], "y": [0.02244036859154854, 0.013060650645922876, 0.1393068438230911, -0.08369764087875763, -0.019555346123243667, -0.07155487605856131], "topics": [1, 2, 3, 4, 5, 6], "cluster": [1, 1, 1, 1, 1, 1], "Freq": [24.220427827520453, 20.28266275869824, 19.98643568178107, 14.374536641380327, 10.845324205247051, 10.290612885372857]}, "tinfo": {"Term": ["week", "difficul", "classroom", "act", "oth", "rul", "mood", "repetit", "irrit", "inappropry", "talk", "behavy", "hopeless", "mot", "pleas", "adult", "task", "impuls", "childr", "psychomot", "thing", "hand", "anxy", "ment", "wav", "rock", "body", "skin", "distress", "compuls", "quie |
| #!/usr/bin/env python3 | |
| # -*- coding: utf-8 -*- | |
| """ | |
| Original Repository with up to date version: https://github.com/WittmannF/sort-google-scholar | |
| This code creates a database with a list of publications data from Google | |
| Scholar. | |
| The data acquired from GS is Title, Citations, Links and Rank. | |
| It is useful for finding relevant papers by sorting by the number of citations | |
| This example will look for the top 100 papers related to the keyword, |
| --1 | |
| SELECT * | |
| FROM "olist_order_payments_dataset" | |
| WHERE payment_type='voucher' | |
| OR payment_type='boleto' | |
| --2 | |
| SELECT *, product_length_cm*product_height_cm*product_width_cm volume | |
| FROM "olist_products_dataset" | |
| LIMIT 5 |
| # General | |
| .DS_Store | |
| .AppleDouble | |
| .LSOverride | |
| # Icon must end with two \r | |
| Icon | |
| # Thumbnails | |
| ._* |
| // Function to automate saving process with dynamic reading list selection | |
| function saveArticles(readingListId) { | |
| // Find all the "Save" buttons | |
| const saveButtons = document.querySelectorAll('a.gs_or_sav'); | |
| saveButtons.forEach((saveButton, index) => { | |
| setTimeout(() => { | |
| // Click the "Save" button | |
| saveButton.click(); |