This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| rolling_channel_coefficient = pm.GaussianRandomWalk( | |
| f"coefficient_{channel}", | |
| sigma=sigma_walk, | |
| init_dist=pm.Normal.dist(channel_prior, 0.01), | |
| dims="time" | |
| ) |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| if splits == "Q": | |
| time_series = pd.PeriodIndex(dates, freq='Q').astype(str).str[-1].astype(int).values | |
| elif splits == "H": | |
| time_series = pd.PeriodIndex(dates, freq='Q').astype(str).str[-1].map({'1':1, '2':1, '3':2, '4':2}).values | |
| elif splits == "YoY": | |
| time_series = np.array([1]*52 + [2]*52) | |
| else: | |
| time_series = np.arange(104) |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| def BayesianMMM(splits="W"): | |
| if splits == "Q": | |
| time_series = pd.PeriodIndex(dates, freq='Q').astype(str).str[-1].astype(int).values | |
| elif splits == "H": | |
| time_series = pd.PeriodIndex(dates, freq='Q').astype(str).str[-1].map({'1':1, '2':1, '3':2, '4':2}).values | |
| elif splits == "YoY": | |
| time_series = np.array([1]*52 + [2]*52) | |
| else: | |
| time_series = np.arange(104) |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| # Value of the objective function (ROI) | |
| print(f"The Optimal Objective Value {opt_model.objVal}") | |
| # Values of decision variables (Funds allocated to each channel) | |
| opt_df = pd.DataFrame.from_dict(x_vars, orient="index", columns=["Variable Object"]) | |
| opt_df.reset_index(inplace=True) | |
| opt_df.rename(columns={"index": "Media"}, inplace=True) | |
| opt_df["Budget Allocated"] = opt_df["Variable Object"].apply(lambda item: item.X) | |
| plt.bar(opt_df["Media"], opt_df["Budget Allocated"]) | |
| plt.xlabel("Media") |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| # initialize model | |
| opt_model = grb.Model(name="Media Budget Optimization") | |
| x_vars = opt_model.addVars(media_roi['media'], vtype=grb.GRB.CONTINUOUS, | |
| lb=0, name="media") | |
| # keep total spend less than new available budget | |
| opt_model.addConstr(sum(x_vars[i] for i in media_roi['media']) <= | |
| new_budget, name="New Budget") |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| current_revenue = media_roi['revenue'].sum() | |
| current_budget = media_roi['spend'].sum() | |
| new_budget = current_budget * 1.05 |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| posterior = pm.sample_posterior_predictive(trace, mmm) | |
| predictions = posterior['posterior_predictive']['revenue'].mean(axis=0).mean(axis=0) * media['REVENUE'].mean() | |
| media_decomp = pd.DataFrame({i:np.array(trace['posterior']["contribution_"+str(i)]).mean(axis=(0,1)) for i in channel_priors.keys()}, index=dates) * media['REVENUE'].mean() | |
| plt.plot(media['REVENUE']) | |
| plt.plot(predictions) | |
| plt.title("Model Fit") |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| def get_response_curve(channel, start_time, end_time): | |
| def hill_transform(x, alpha, gamma): | |
| return 1 / (1 + (x/gamma)**-alpha) | |
| # parameters | |
| coefficient = model.query("variable == @channel")['coefficient'].iloc[0] | |
| alpha = model.query("variable == @channel")['alpha'].iloc[0] | |
| gamma = model.query("variable == @channel")['gamma'].iloc[0] | |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| media_decomp = pd.DataFrame({i:np.array(trace['posterior']["contribution_"+str(i)]).mean(axis=(0,1)) for i in channel_priors.keys()}, index=dates) * media['REVENUE'].mean() | |
| media_roi = pd.concat([ | |
| media.drop(['DATE','REVENUE'],axis=1).sum(), | |
| media_decomp.sum() | |
| ], axis=1).reset_index() | |
| media_roi.columns = ['media','spend','revenue'] | |
| media_roi['ROI'] = (media_roi['revenue'] / media_roi['spend']) |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| bias = pd.DataFrame({ | |
| "t": np.arange(104) | |
| }) | |
| d = 2 | |
| # Fourier terms | |
| for i in np.arange(1,d+1): | |
| bias[f"cos_{i}"] = np.cos(2 * np.pi * i * bias["t"] / 52) | |
| bias[f"sin_{i}"] = np.sin(2 * np.pi * i * bias["t"] / 52) |