graph LR
A[Tensorflow] --implements--> B[Deep neural nets]
A --was developed by --> C[Google]
graph LR
digraph PurchaseFlow { | |
rankdir=TD; | |
edge [color="#333333", penwidth=1, arrowsize=1.2, arrowhead=onormal, style="dashed"]; | |
splines=spline; | |
node [shape=box]; | |
nodesep=0.8; // Increase horizontal spacing between nodes | |
ranksep=0.7; | |
// Node definitions with labels | |
A [label="available funds"]; | |
B [label="purchases product"]; |
graph LR
A[Tensorflow] --implements--> B[Deep neural nets]
A --was developed by --> C[Google]
graph LR
graph LR
A((Keras 3)) --is a high level API for --> B((Tensorflow))
B --was developed by-->H[Google]
C((Pytorch)) --was developed by-->D[Meta]
A --is a high level API for --> C
A --is a high level API for --> F[JAX]
F --was developed by-->H
A --implements--> G[Deep neural nets]
B --implements--> G
import numpy as np | |
import scipy.stats as stats | |
# Number of trials and successes for each group | |
n_1 = 100 | |
x_1 = 6 | |
n_2 = 125 | |
x_2 = 5 | |
# Parameters for the prior distributions |
#Test imports | |
import urllib2, ssl, json, time, re | |
from bs4 import BeautifulSoup | |
from selenium import webdriver | |
from selenium.webdriver.support.ui import Select | |
#Test urllib2 | |
import urllib2 | |
response = urllib2.urlopen('https://en.wikipedia.org/wiki/Test', context=ssl.SSLContext(ssl.PROTOCOL_TLSv1)) |