Skip to content

Instantly share code, notes, and snippets.

View dongzhuoyao's full-sized avatar
💭
I may be slow to respond.

Tao Hu dongzhuoyao

💭
I may be slow to respond.
View GitHub Profile
@Birch-san
Birch-san / slerp.py
Last active October 1, 2024 08:48
PyTorch implementation of spherical linear interpolation
from torch import FloatTensor, LongTensor, Tensor, Size, lerp, zeros_like
from torch.linalg import norm
# adapted to PyTorch from:
# https://gist.github.com/dvschultz/3af50c40df002da3b751efab1daddf2c
# most of the extra complexity is to support:
# - many-dimensional vectors
# - v0 or v1 with last dim all zeroes, or v0 ~colinear with v1
# - falls back to lerp()
# - conditional logic implemented with parallelism rather than Python loops
@TengdaHan
TengdaHan / ddp_notes.md
Last active November 1, 2024 05:58
Multi-node-training on slurm with PyTorch

Multi-node-training on slurm with PyTorch

What's this?

  • A simple note for how to start multi-node-training on slurm scheduler with PyTorch.
  • Useful especially when scheduler is too busy that you cannot get multiple GPUs allocated, or you need more than 4 GPUs for a single job.
  • Requirement: Have to use PyTorch DistributedDataParallel(DDP) for this purpose.
  • Warning: might need to re-factor your own code.
  • Warning: might be secretly condemned by your colleagues because using too many GPUs.
@0x5e
0x5e / music_oversea.txt
Last active August 3, 2022 01:37
绕过海外音乐版权限制(网易云音乐、QQ音乐、酷狗音乐、酷我音乐、百度音乐)
Iee9keaYk+mfs+S5kAp8fG11c2ljLjE2My5jb20KQEAqLm11c2ljLjEyNi5uZXQKCiFRUemfs+S5kAp8
fHkucXEuY29tXgp8fGkueS5xcS5jb20vdjgvcGxheXNvbmcuaHRtbAp8fGMueS5xcS5jb20vdjgvZmNn
LWJpbi9mY2dfcGxheV9zaW5nbGVfc29uZy5mY2cKQEBkbC5zdHJlYW0ucXFtdXNpYy5xcS5jb20KCiHp
hbfni5fpn7PkuZAKfHxrdWdvdS5jb21eCnx8aXAua3Vnb3UuY29tL2NoZWNrL2lzY24KQEBmcy5vcGVu
Lmt1Z291LmNvbQoKIemFt+aIkemfs+S5kAp8fGt1d28uY25eCnx8aXBjaGVjay5rdXdvLmNuL2lwX2No
ZWNrLmt1d28KQEBzeWNkbi5rdXdvLmNuXgoKIeeZvuW6pumfs+S5kAp8fG11c2ljLmJhaWR1LmNvbS9k
YXRhL3VzZXIvbG9jYXRpb24KQEB5aW55dWVzaGl0aW5nLmJhaWR1LmNvbQo=
@kvn219
kvn219 / Spatial_Transformer_Example_Part1.ipynb
Last active December 31, 2020 05:04
Spatial Transformer Networks with Tensorflow: Part I
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
@akiross
akiross / Convolutional Arithmetic.ipynb
Last active October 24, 2024 07:04
Few experiments on how convolution and transposed convolution (deconvolution) should work in tensorflow.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
@fchollet
fchollet / classifier_from_little_data_script_2.py
Last active September 13, 2023 03:34
Updated to the Keras 2.0 API.
'''This script goes along the blog post
"Building powerful image classification models using very little data"
from blog.keras.io.
It uses data that can be downloaded at:
https://www.kaggle.com/c/dogs-vs-cats/data
In our setup, we:
- created a data/ folder
- created train/ and validation/ subfolders inside data/
- created cats/ and dogs/ subfolders inside train/ and validation/
- put the cat pictures index 0-999 in data/train/cats
@dela3499
dela3499 / convnet.py
Created January 31, 2016 23:58
Rewriting keras example
from keras.models import Sequential
from keras.layers import Convolution2D, ZeroPadding2D, MaxPooling2D
img_width, img_height = 128, 128
# this will contain our generated images
input_img = K.placeholder((1, 3, img_width, img_height))
# build the VGG16 network with our input_img as input
first_layer = ZeroPadding2D((1, 1), input_shape=(3, img_width, img_height))
@ryerh
ryerh / tmux-cheatsheet.markdown
Last active November 18, 2024 13:47 — forked from MohamedAlaa/tmux-cheatsheet.markdown
Tmux 快捷键 & 速查表 & 简明教程

注意:本文内容适用于 Tmux 2.3 及以上的版本,但是绝大部分的特性低版本也都适用,鼠标支持、VI 模式、插件管理在低版本可能会与本文不兼容。

Tmux 快捷键 & 速查表 & 简明教程

启动新会话:

tmux [new -s 会话名 -n 窗口名]

恢复会话:

@baraldilorenzo
baraldilorenzo / readme.md
Last active October 10, 2024 23:19
VGG-16 pre-trained model for Keras

##VGG16 model for Keras

This is the Keras model of the 16-layer network used by the VGG team in the ILSVRC-2014 competition.

It has been obtained by directly converting the Caffe model provived by the authors.

Details about the network architecture can be found in the following arXiv paper:

Very Deep Convolutional Networks for Large-Scale Image Recognition

K. Simonyan, A. Zisserman

@tzutalin
tzutalin / deploy.prototxt
Last active May 11, 2018 10:01
Network In Network
name: "nin_imagenet"
input: "data"
input_shape {
dim: 10
dim: 3
dim: 224
dim: 224
}
layers {
bottom: "data"