Last active
October 3, 2023 16:52
-
-
Save gVallverdu/0b446d0061a785c808dbe79262a37eea to your computer and use it in GitHub Desktop.
Treemaps with python and matplotlib
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#!/usr/bin/env python3 | |
# coding: utf-8 | |
import matplotlib | |
import matplotlib.pyplot as plt | |
import pandas as pd | |
import squarify | |
import platform | |
# print versions | |
print("python : ", platform.python_version()) | |
print("pandas : ", pd.__version__) | |
print("matplotlib : ", matplotlib.__version__) | |
print("squarify : 0.4.3") | |
# quantities plotted | |
# squarre area is the town surface area (superf) | |
# color scale is the town population in 2011 (p11_pop) | |
# read data from csv file | |
# data from CAPP opendata http://opendata.agglo-pau.fr/index.php/fiche?idQ=27 | |
df = pd.read_csv("Evolution_et_structure_de_la_population/Evolution_structure_population.csv", sep=";") | |
df = df.set_index("libgeo") | |
df = df[["superf", "p11_pop"]] | |
df2 = df.sort_values(by="superf", ascending=False) | |
# treemap parameters | |
x = 0. | |
y = 0. | |
width = 100. | |
height = 100. | |
cmap = matplotlib.cm.viridis | |
# color scale on the population | |
# min and max values without Pau | |
mini, maxi = df2.drop("PAU").p11_pop.min(), df2.drop("PAU").p11_pop.max() | |
norm = matplotlib.colors.Normalize(vmin=mini, vmax=maxi) | |
colors = [cmap(norm(value)) for value in df2.p11_pop] | |
colors[1] = "#FBFCFE" | |
# labels for squares | |
labels = ["%s\n%d km2\n%d hab" % (label) for label in zip(df2.index, df2.superf, df2.p11_pop)] | |
labels[11] = "MAZERES-\nLEZONS\n%d km2\n%d hab" % (df2["superf"]["MAZERES-LEZONS"], df2["p11_pop"]["MAZERES-LEZONS"]) | |
# make plot | |
fig = plt.figure(figsize=(12, 10)) | |
fig.suptitle("Population et superficie des communes de la CAPP", fontsize=20) | |
ax = fig.add_subplot(111, aspect="equal") | |
ax = squarify.plot(df2.superf, color=colors, label=labels, ax=ax, alpha=.7) | |
# use this if you want to draw a border between rectangles | |
# you have to give both linewidth and edgecolor | |
# ax = squarify.plot(df2.superf, color=colors, label=labels, ax=ax, alpha=.7, | |
# bar_kwargs=dict(linewidth=1, edgecolor="#222222")) | |
ax.set_xticks([]) | |
ax.set_yticks([]) | |
ax.set_title("L'aire de chaque carré est proportionnelle à la superficie de la commune\n", fontsize=14) | |
# color bar | |
# create dummy invisible image with a color map | |
img = plt.imshow([df2.p11_pop], cmap=cmap) | |
img.set_visible(False) | |
fig.colorbar(img, orientation="vertical", shrink=.96) | |
fig.text(.76, .9, "Population", fontsize=14) | |
fig.text(.5, 0.1, | |
"Superficie totale %d km2, Population de la CAPP : %d hab" % (df2.superf.sum(), df2.p11_pop.sum()), | |
fontsize=14, | |
ha="center") | |
fig.text(.5, 0.07, | |
"Source : http://opendata.agglo-pau.fr/", | |
fontsize=14, | |
ha="center") | |
plt.savefig("capp_treemaps.png") | |
plt.show() |
A very nice example. Solved a lot of confusion regarding squarify treemaps.
Can someone tell me how to enable textwrap inside the box?
The argument:
squarify.plot(...,text_kwargs={'wrap':True},...)
doesn't work for me.The example uses the trick of using formatted labels
labels = ["%s\n%d km2\n%d hab" % (label) for label in zip(df2.index, df2.superf, df2.p11_pop)]
This is a solution: Let's say the labels are ['Hi', 'This is a very long label']. If you use the f' string and the \n , it will move the rest of the label in a new line: ['Hi', f'This is a \n very long label'].
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Hi,
Thank you all for you comments. I answer a long long time after the first comment, I am sorry.
Hereafter are the versions of key packages:
Here is the picture I got today with the above mentioned versions:

I add a commentary in the code from the message of @cameronabrams to draw rectangle borders.
@Michael-E-Rose , The link to the data was provided on the figure, I am pretty sure I cannot distribute the data by myself. This is a direct link to the data on the open data website of Pau aglomeration: https://opendata.agglo-pau.fr/index.php/fiche?idQ=27
@ashuein I think that you cannot use the wrap option here. If you want to wrap text you need a width. Actually, matplotlib will wrap text inside the Axes area. Thus here you cannot wrap into rectangles. Look at this page autowrap.