Skip to content

Instantly share code, notes, and snippets.

View hjian42's full-sized avatar

Hang Jiang hjian42

View GitHub Profile
@wwbrannon
wwbrannon / create-matlaber-env.sh
Last active November 17, 2022 18:56
Set up matlaber environment
#!/bin/bash
set -xe
export PYTHON_VERSION=3.9
export CUDA_VERSION=11.3
export JUPYTER_PORT="$(id -u)"
##
## Make SSL certs
@yuchenlin
yuchenlin / gpt_sent_prob.py
Last active January 14, 2025 04:41
Compute sentence probability using GPT-2 with huggingface transformers
import torch
from transformers import OpenAIGPTTokenizer, OpenAIGPTLMHeadModel
from transformers import GPT2Tokenizer, GPT2LMHeadModel
import numpy as np
from scipy.special import softmax
def model_init(model_string, cuda):
if model_string.startswith("gpt2"):
tokenizer = GPT2Tokenizer.from_pretrained(model_string)
model = GPT2LMHeadModel.from_pretrained(model_string)
@HarshTrivedi
HarshTrivedi / pad_packed_demo.py
Last active November 7, 2025 15:47 — forked from Tushar-N/pad_packed_demo.py
Minimal tutorial on packing (pack_padded_sequence) and unpacking (pad_packed_sequence) sequences in pytorch.
import torch
from torch import LongTensor
from torch.nn import Embedding, LSTM
from torch.autograd import Variable
from torch.nn.utils.rnn import pack_padded_sequence, pad_packed_sequence
## We want to run LSTM on a batch of 3 character sequences ['long_str', 'tiny', 'medium']
#
# Step 1: Construct Vocabulary
# Step 2: Load indexed data (list of instances, where each instance is list of character indices)
@ragulpr
ragulpr / py
Last active December 7, 2020 10:24
Keras masking example
import keras
from keras.layers import *
from keras.models import Model
import theano as T
import tensorflow as tf
print('theano ver.',T.__version__)
print('tensorflow ver.',tf.__version__)
print('keras ver.',keras.__version__)
np.set_printoptions(precision=4)
np.random.seed(1)
@cbaziotis
cbaziotis / AttentionWithContext.py
Last active April 25, 2022 14:37
Keras Layer that implements an Attention mechanism, with a context/query vector, for temporal data. Supports Masking. Follows the work of Yang et al. [https://www.cs.cmu.edu/~diyiy/docs/naacl16.pdf] "Hierarchical Attention Networks for Document Classification"
def dot_product(x, kernel):
"""
Wrapper for dot product operation, in order to be compatible with both
Theano and Tensorflow
Args:
x (): input
kernel (): weights
Returns:
"""
if K.backend() == 'tensorflow':
@cbaziotis
cbaziotis / Attention.py
Last active October 22, 2024 08:31
Keras Layer that implements an Attention mechanism for temporal data. Supports Masking. Follows the work of Raffel et al. [https://arxiv.org/abs/1512.08756]
from keras import backend as K, initializers, regularizers, constraints
from keras.engine.topology import Layer
def dot_product(x, kernel):
"""
Wrapper for dot product operation, in order to be compatible with both
Theano and Tensorflow
Args:
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
@jerrybendy
jerrybendy / index.html
Created January 5, 2017 03:33
一个使用 HTML5 录音的例子(网上看到的,收藏下)
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<title></title>
</head>
<body>
<div>
<audio controls autoplay></audio>
<input onclick="startRecording()" type="button" value="录音" />
@wassname
wassname / keras_attention_wrapper.py
Created November 1, 2016 08:06
A keras attention layer that wraps RNN layers.
"""
A keras attention layer that wraps RNN layers.
Based on tensorflows [attention_decoder](https://github.com/tensorflow/tensorflow/blob/c8a45a8e236776bed1d14fd71f3b6755bd63cc58/tensorflow/python/ops/seq2seq.py#L506)
and [Grammar as a Foreign Language](https://arxiv.org/abs/1412.7449).
date: 20161101
author: wassname
url: https://gist.github.com/wassname/5292f95000e409e239b9dc973295327a
"""
@mbollmann
mbollmann / attention_lstm.py
Last active August 22, 2024 07:06
My attempt at creating an LSTM with attention in Keras
class AttentionLSTM(LSTM):
"""LSTM with attention mechanism
This is an LSTM incorporating an attention mechanism into its hidden states.
Currently, the context vector calculated from the attended vector is fed
into the model's internal states, closely following the model by Xu et al.
(2016, Sec. 3.1.2), using a soft attention model following
Bahdanau et al. (2014).
The layer expects two inputs instead of the usual one: