-
-
Save jeremyjordan/ac0229abd4b2b7000aca1643e88e0f02 to your computer and use it in GitHub Desktop.
import matplotlib.pyplot as plt | |
import keras.backend as K | |
from keras.callbacks import Callback | |
class LRFinder(Callback): | |
''' | |
A simple callback for finding the optimal learning rate range for your model + dataset. | |
# Usage | |
```python | |
lr_finder = LRFinder(min_lr=1e-5, | |
max_lr=1e-2, | |
steps_per_epoch=np.ceil(epoch_size/batch_size), | |
epochs=3) | |
model.fit(X_train, Y_train, callbacks=[lr_finder]) | |
lr_finder.plot_loss() | |
``` | |
# Arguments | |
min_lr: The lower bound of the learning rate range for the experiment. | |
max_lr: The upper bound of the learning rate range for the experiment. | |
steps_per_epoch: Number of mini-batches in the dataset. Calculated as `np.ceil(epoch_size/batch_size)`. | |
epochs: Number of epochs to run experiment. Usually between 2 and 4 epochs is sufficient. | |
# References | |
Blog post: jeremyjordan.me/nn-learning-rate | |
Original paper: https://arxiv.org/abs/1506.01186 | |
''' | |
def __init__(self, min_lr=1e-5, max_lr=1e-2, steps_per_epoch=None, epochs=None): | |
super().__init__() | |
self.min_lr = min_lr | |
self.max_lr = max_lr | |
self.total_iterations = steps_per_epoch * epochs | |
self.iteration = 0 | |
self.history = {} | |
def clr(self): | |
'''Calculate the learning rate.''' | |
x = self.iteration / self.total_iterations | |
return self.min_lr + (self.max_lr-self.min_lr) * x | |
def on_train_begin(self, logs=None): | |
'''Initialize the learning rate to the minimum value at the start of training.''' | |
logs = logs or {} | |
K.set_value(self.model.optimizer.lr, self.min_lr) | |
def on_batch_end(self, epoch, logs=None): | |
'''Record previous batch statistics and update the learning rate.''' | |
logs = logs or {} | |
self.iteration += 1 | |
self.history.setdefault('lr', []).append(K.get_value(self.model.optimizer.lr)) | |
self.history.setdefault('iterations', []).append(self.iteration) | |
for k, v in logs.items(): | |
self.history.setdefault(k, []).append(v) | |
K.set_value(self.model.optimizer.lr, self.clr()) | |
def plot_lr(self): | |
'''Helper function to quickly inspect the learning rate schedule.''' | |
plt.plot(self.history['iterations'], self.history['lr']) | |
plt.yscale('log') | |
plt.xlabel('Iteration') | |
plt.ylabel('Learning rate') | |
plt.show() | |
def plot_loss(self): | |
'''Helper function to quickly observe the learning rate experiment results.''' | |
plt.plot(self.history['lr'], self.history['loss']) | |
plt.xscale('log') | |
plt.xlabel('Learning rate') | |
plt.ylabel('Loss') | |
plt.show() |
@jeremyjordan
Description of steps_per_epoch
is wrong, it should rather be np.ceil(self.total_samples / float(self.batch_size))
instead of np.ceil(epoch_size/batch_size)
(hint: think about when epoch is 1)
@jeremyjordan I am trying to implement this code in Keras 2.1.3 and TF 1.8 as:
lr_finder = LRFinder(min_lr=1e-5, max_lr=1e-2, steps_per_epoch=np.ceil(epoch_size/batch_size), epochs=3)
and then using a model.fit_generator:
history = model.fit_generator( train_generator, steps_per_epoch=Training_case_number/Training_batch_size, epochs=epochs, validation_data=validation_generator, validation_steps=20, callbacks = [LRFinder])
And I am getting a : TypeError: set_model() missing 1 required positional argument: 'model' error.
Any suggestions?
@drsxr change your callback from LRFinder
to lr_finder
So I assume epoch_size
should be defined explicitly in advance before calling LRFinder()
, which is the number of entries in X_train?
Here's my version: https://gist.github.com/WittmannF/c55ed82d27248d18799e2be324a79473
Three changes were made:
- Number of iterations is automatically inferred as the number of batches (i.e., it will always run over one epoch)
- Set of learning rates are spaced evenly on a log scale (a geometric progression) using np.geospace
- Automatic stop criteria if current_loss > 10 x lowest_loss
@WittmannF looks great! Thanks for sharing.
I was halfway through writing this and was searching for the original paper before this popped up on google.
Thank You Sir for your contribution!