Last active
March 3, 2022 08:46
-
-
Save jeremyjordan/ac0229abd4b2b7000aca1643e88e0f02 to your computer and use it in GitHub Desktop.
Keras Callback for finding the optimal range of learning rates
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import matplotlib.pyplot as plt | |
import keras.backend as K | |
from keras.callbacks import Callback | |
class LRFinder(Callback): | |
''' | |
A simple callback for finding the optimal learning rate range for your model + dataset. | |
# Usage | |
```python | |
lr_finder = LRFinder(min_lr=1e-5, | |
max_lr=1e-2, | |
steps_per_epoch=np.ceil(epoch_size/batch_size), | |
epochs=3) | |
model.fit(X_train, Y_train, callbacks=[lr_finder]) | |
lr_finder.plot_loss() | |
``` | |
# Arguments | |
min_lr: The lower bound of the learning rate range for the experiment. | |
max_lr: The upper bound of the learning rate range for the experiment. | |
steps_per_epoch: Number of mini-batches in the dataset. Calculated as `np.ceil(epoch_size/batch_size)`. | |
epochs: Number of epochs to run experiment. Usually between 2 and 4 epochs is sufficient. | |
# References | |
Blog post: jeremyjordan.me/nn-learning-rate | |
Original paper: https://arxiv.org/abs/1506.01186 | |
''' | |
def __init__(self, min_lr=1e-5, max_lr=1e-2, steps_per_epoch=None, epochs=None): | |
super().__init__() | |
self.min_lr = min_lr | |
self.max_lr = max_lr | |
self.total_iterations = steps_per_epoch * epochs | |
self.iteration = 0 | |
self.history = {} | |
def clr(self): | |
'''Calculate the learning rate.''' | |
x = self.iteration / self.total_iterations | |
return self.min_lr + (self.max_lr-self.min_lr) * x | |
def on_train_begin(self, logs=None): | |
'''Initialize the learning rate to the minimum value at the start of training.''' | |
logs = logs or {} | |
K.set_value(self.model.optimizer.lr, self.min_lr) | |
def on_batch_end(self, epoch, logs=None): | |
'''Record previous batch statistics and update the learning rate.''' | |
logs = logs or {} | |
self.iteration += 1 | |
self.history.setdefault('lr', []).append(K.get_value(self.model.optimizer.lr)) | |
self.history.setdefault('iterations', []).append(self.iteration) | |
for k, v in logs.items(): | |
self.history.setdefault(k, []).append(v) | |
K.set_value(self.model.optimizer.lr, self.clr()) | |
def plot_lr(self): | |
'''Helper function to quickly inspect the learning rate schedule.''' | |
plt.plot(self.history['iterations'], self.history['lr']) | |
plt.yscale('log') | |
plt.xlabel('Iteration') | |
plt.ylabel('Learning rate') | |
plt.show() | |
def plot_loss(self): | |
'''Helper function to quickly observe the learning rate experiment results.''' | |
plt.plot(self.history['lr'], self.history['loss']) | |
plt.xscale('log') | |
plt.xlabel('Learning rate') | |
plt.ylabel('Loss') | |
plt.show() |
So I assume epoch_size
should be defined explicitly in advance before calling LRFinder()
, which is the number of entries in X_train?
Here's my version: https://gist.github.com/WittmannF/c55ed82d27248d18799e2be324a79473
Three changes were made:
- Number of iterations is automatically inferred as the number of batches (i.e., it will always run over one epoch)
- Set of learning rates are spaced evenly on a log scale (a geometric progression) using np.geospace
- Automatic stop criteria if current_loss > 10 x lowest_loss
@WittmannF looks great! Thanks for sharing.
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
@drsxr change your callback from
LRFinder
tolr_finder