Skip to content

Instantly share code, notes, and snippets.

View joeyism's full-sized avatar

Joey joeyism

View GitHub Profile
import tensorflow as tf
image_size = 32
input_images = tf.placeholder(tf.float32,
shape=[None, image_size, image_size, 3],
name="input_images")
# First CONV layer
kernel = tf.Variable(tf.truncated_normal([11, 11, 3, 96],
dtype=tf.float32,
import tensorflow as tf
image_size = 32
input_images = tf.placeholder(tf.float32,
shape=[None, image_size, image_size, 3],
name="input_images")
# First CONV layer
kernel = tf.Variable(tf.truncated_normal([11, 11, 3, 96],
dtype=tf.float32,
@joeyism
joeyism / model.py
Last active September 22, 2019 03:31
import tensorflow as tf
image_size = 32
input_images = tf.placeholder(tf.float32,
shape=[None, image_size, image_size, 3],
name="input_images")
# First CONV layer
kernel = tf.Variable(tf.truncated_normal([11, 11, 3, 96],
dtype=tf.float32,
import tensorflow as tf
n_classes = 10 # <-- newly added constant
image_size = 32
input_images = tf.placeholder(tf.float32,
shape=[None, image_size, image_size, 3],
name="input_images")
# First CONV layer
from cifar import Cifar
import tensorflow as tf
import model
learning_rate = 0.001
y = tf.placeholder(tf.float32, [None, model.n_classes])
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(
logits=model.out,
labels=y))
from cifar import Cifar
from tqdm import tqdm
import tensorflow as tf
import model
import helper
learning_rate = 0.001
batch_size = 16
no_of_epochs = 10
import numpy as np
def __one_hot__(num, dim=1000):
vec = np.zeros(dim)
vec[num] = 1
return vec
def transform_to_input_output(input_output, dim=1000):
from cifar import Cifar
from tqdm import tqdm
import tensorflow as tf
import model
import helper
learning_rate = 0.001
batch_size = 16
no_of_epochs = 10
from cifar import Cifar
from tqdm import tqdm
import tensorflow as tf
import model
import helper
learning_rate = 0.001
batch_size = 16
no_of_epochs = 10
from cifar import Cifar
from tqdm import tqdm
import tensorflow as tf
import model
import helper
learning_rate = 0.001
batch_size = 16
no_of_epochs = 10