Skip to content

Instantly share code, notes, and snippets.

View laksjdjf's full-sized avatar
🌏
On Earth

laksjdjf

🌏
On Earth
View GitHub Profile
import torch
class VisualStylePrompting:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"model": ("MODEL",),
"reference": ("LATENT",),
"depth": ("INT", {"default": 0, "min": -1, "max": 12}),
"batch_size": ("INT", {"default": 1, "min": 1, "max": 64}),
# ref: ScaleCrafter https://github.com/YingqingHe/ScaleCrafter
import math
import comfy.ops
import torch.nn.functional as F
ops = comfy.ops.disable_weight_init
class ScaleCrafter:
@classmethod
def INPUT_TYPES(s):
@laksjdjf
laksjdjf / dilate_conv.py
Last active March 6, 2024 11:35
Reference from ScaleCrafter[https://arxiv.org/abs/2310.07702]
# https://arxiv.org/abs/2310.07702
import comfy.ops
ops = comfy.ops.disable_weight_init
class DilateConv:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
===========================================================================================================================================================
Layer (type (var_name)) Input Shape Output Shape Param # Kernel Shape
===========================================================================================================================================================
StableCascadeUnet (StableCascadeUnet) -- [1, 4, 256, 256] -- 3
├─Linear (clip_txt_pooled_mapper) [1, 1, 1280] [1, 1, 5120] 6,558,720 --
├─LayerNorm (clip_norm) [1, 4, 1280] [1, 4, 1280] -- --
├─Sequential (embedding) [1, 4, 256, 256] [1, 320, 128, 128] -- --
│ └─PixelUnshuf
===========================================================================================================================================================
Layer (type (var_name)) Input Shape Output Shape Param # Kernel Shape
===========================================================================================================================================================
StableCascadeUnet (StableCascadeUnet) [2, 16, 24, 24] [2, 16, 24, 24] 8,923,136 3
├─Linear (clip_txt_pooled_mapper) [2, 77, 1280] [2, 77, 8192] 10,493,952 --
├─LayerNorm (clip_norm) [2, 308, 2048] [2, 308, 2048] -- --
├─Sequential (embedding) [2, 16, 24, 24] [2, 2048, 24, 24] -- --
│ └─PixelUnshuf
'''
load from sampling/custom_sampling/scheulers
input text like "999,893,...,156"
connect to SamplerCustom
'''
import torch
class TextScheduler:
@classmethod
@laksjdjf
laksjdjf / LCMSamplerRCFG.py
Last active December 21, 2023 12:02
Implementation of RCFG in https://arxiv.org/abs/2312.12491
'''
Implementation of RCFG in https://arxiv.org/abs/2312.12491
Node is in sampling/custom_sampling/samplers
original_latent is OPTIONAL
If original_latent is set, it is Self-Negative else Onetime-Negative
cfg is recommendet near 1.0 (KSAMPLER"s cfg is ignored)
delta is よくわかんない
'''
from comfy.samplers import KSAMPLER
'''
https://arxiv.org/abs/2312.00858
1. put this file in ComfyUI/custom_nodes
2. load node from <loaders>
start_step, end_step: apply this method when the timestep is between start_step and end_step
cache_interval: interval of caching (1 means no caching)
cache_depth: depth of caching
'''
import comfy
from comfy.samplers import KSAMPLER
import torch
from torchvision.transforms.functional import gaussian_blur
from comfy.k_diffusion.sampling import default_noise_sampler, get_ancestral_step, to_d, BrownianTreeNoiseSampler
from tqdm.auto import trange
def interpolate(x, size, unsharp_strength=0.0, unsharp_kernel_size=3, unsharp_sigma=0.5, unsharp=False, mode="bicubic", align_corners=False):
x = torch.nn.functional.interpolate(x, size=size, mode=mode, align_corners=align_corners)
if unsharp_strength > 0 and unsharp:
import comfy
from comfy.samplers import KSAMPLER
import torch
from comfy.k_diffusion.sampling import default_noise_sampler, get_ancestral_step, to_d, BrownianTreeNoiseSampler
from tqdm.auto import trange
@torch.no_grad()
def sample_euler_ancestral(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None, upscale_ratio=2.0, start_step=5, end_step=15, upscale_n_step=3):
"""Ancestral sampling with Euler method steps."""
extra_args = {} if extra_args is None else extra_args