-
-
Save rolux/48f1da6cf2bc6ca5833dbacbf852b348 to your computer and use it in GitHub Desktop.
# git clone https://github.com/NVlabs/stylegan2 | |
import os | |
import numpy as np | |
from scipy.interpolate import interp1d | |
from scipy.io import wavfile | |
import matplotlib.pyplot as plt | |
import PIL.Image | |
import moviepy.editor | |
import dnnlib | |
import dnnlib.tflib as tflib | |
import pretrained_networks | |
audio = {} | |
fps = 60 | |
# https://www.google.com/search?q=death+grips+black+google+download | |
for mp3_filename in [f for f in os.listdir('data') if f.endswith('.mp3')]: | |
mp3_filename = f'data/{mp3_filename}' | |
wav_filename = mp3_filename[:-4] + '.wav' | |
if not os.path.exists(wav_filename): | |
audio_clip = moviepy.editor.AudioFileClip(mp3_filename) | |
audio_clip.write_audiofile(wav_filename, fps=44100, nbytes=2, codec='pcm_s16le') | |
track_name = os.path.basename(wav_filename)[15:-5] | |
rate, signal = wavfile.read(wav_filename) | |
signal = np.mean(signal, axis=1) # to mono | |
signal = np.abs(signal) | |
seed = signal.shape[0] | |
duration = signal.shape[0] / rate | |
frames = int(np.ceil(duration * fps)) | |
samples_per_frame = signal.shape[0] / frames | |
audio[track_name] = np.zeros(frames, dtype=signal.dtype) | |
for frame in range(frames): | |
start = int(round(frame * samples_per_frame)) | |
stop = int(round((frame + 1) * samples_per_frame)) | |
audio[track_name][frame] = np.mean(signal[start:stop], axis=0) | |
audio[track_name] /= max(audio[track_name]) | |
for track in sorted(audio.keys()): | |
plt.figure(figsize=(8, 3)) | |
plt.title(track) | |
plt.plot(audio[track]) | |
plt.savefig(f'data/{track}.png') | |
network_pkl = 'gdrive:networks/stylegan2-ffhq-config-f.pkl' | |
_G, _D, Gs = pretrained_networks.load_networks(network_pkl) | |
Gs_kwargs = dnnlib.EasyDict() | |
Gs_kwargs.output_transform = dict(func=tflib.convert_images_to_uint8, nchw_to_nhwc=True) | |
Gs_kwargs.randomize_noise = False | |
Gs_syn_kwargs = dnnlib.EasyDict() | |
Gs_syn_kwargs.output_transform = dict(func=tflib.convert_images_to_uint8, nchw_to_nhwc=True) | |
Gs_syn_kwargs.randomize_noise = False | |
Gs_syn_kwargs.minibatch_size = 4 | |
noise_vars = [var for name, var in Gs.components.synthesis.vars.items() if name.startswith('noise')] | |
w_avg = Gs.get_var('dlatent_avg') | |
def get_ws(n, frames, seed): | |
filename = f'data/ws_{n}_{frames}_{seed}.npy' | |
if not os.path.exists(filename): | |
src_ws = np.random.RandomState(seed).randn(n, 512) | |
ws = np.empty((frames, 512)) | |
for i in range(512): | |
# FIXME: retarded | |
x = np.linspace(0, 3*frames, 3*len(src_ws), endpoint=False) | |
y = np.tile(src_ws[:, i], 3) | |
x_ = np.linspace(0, 3*frames, 3*frames, endpoint=False) | |
y_ = interp1d(x, y, kind='quadratic', fill_value='extrapolate')(x_) | |
ws[:, i] = y_[frames:2*frames] | |
np.save(filename, ws) | |
else: | |
ws = np.load(filename) | |
return ws | |
def mix_styles(wa, wb, ivs): | |
w = np.copy(wa) | |
for i, v in ivs: | |
w[i] = wa[i] * (1 - v) + wb[i] * v | |
return w | |
def normalize_vector(v): | |
return v * np.std(w_avg) / np.std(v) + np.mean(w_avg) - np.mean(v) | |
def render_frame(t): | |
global base_index | |
frame = np.clip(np.int(np.round(t * fps)), 0, frames - 1) | |
base_index += base_speed * audio['Instrumental'][frame]**2 | |
base_w = base_ws[int(round(base_index)) % len(base_ws)] | |
base_w = np.tile(base_w, (18, 1)) | |
psi = 0.5 + audio['FX'][frame] / 2 | |
base_w = w_avg + (base_w - w_avg) * psi | |
mix_w = np.tile(mix_ws[frame], (18, 1)) | |
mix_w = w_avg + (mix_w - w_avg) * 0.75 | |
ranges = [range(0, 4), range(4, 8), range(8, 18)] | |
values = [audio[track][frame] for track in ['Drums', 'E Drums', 'Synth']] | |
w = mix_styles(base_w, mix_w, zip(ranges, values)) | |
w += mouth_open * audio['Vocal'][frame] * 1.5 | |
image = Gs.components.synthesis.run(np.stack([w]), **Gs_syn_kwargs)[0] | |
image = PIL.Image.fromarray(image).resize((size, size), PIL.Image.LANCZOS) | |
return np.array(image) | |
size = 1080 | |
seconds = int(np.ceil(duration)) | |
resolution = 10 | |
base_frames = resolution * frames | |
base_ws = get_ws(seconds, base_frames, seed) | |
base_speed = base_frames / sum(audio['Instrumental']**2) | |
base_index = 0 | |
mix_ws = get_ws(seconds, frames, seed + 1) | |
# https://rolux.org/media/stylegan2/vectors/mouth_ratio.npy | |
mouth_open = normalize_vector(-np.load('data/mouth_ratio.npy')) | |
mp4_filename = 'data/Culture Shock.mp4' | |
video_clip = moviepy.editor.VideoClip(render_frame, duration=duration) | |
audio_clip_i = moviepy.editor.AudioFileClip('data/Culture Shock (Instrumental).wav') | |
audio_clip_v = moviepy.editor.AudioFileClip('data/Culture Shock (Vocal).wav') | |
audio_clip = moviepy.editor.CompositeAudioClip([audio_clip_i, audio_clip_v]) | |
video_clip = video_clip.set_audio(audio_clip) | |
video_clip.write_videofile(mp4_filename, fps=fps, codec='libx264', audio_codec='aac', bitrate='8M') |
@zncook: See my comment above!
@zncook: See my comment above!
Hi. Where download these audio files? Culture Shock (Drums).mp3, Culture Shock (E Drums).mp3, etc.
can I customize these audio files?
@zncook: as it says above: https://www.google.com/search?q=death+grips+black+google+download
Of course, you can provide your own files, split them with https://www.google.com/search?q=spleeter
, etc.
what python you use? stylegun2 is for 3.6 or later but PIL is for 2.7 or less
what python you use? stylegun2 is for 3.6 or later but PIL is for 2.7 or less
@nikitatishin5 install pillow instead of PIL and use python 3.6
if I want to combine another parameter to the drums for example, how should I do it? I already downloaded other vectors but I can't seem to make it work properly
me to:
Setting up TensorFlow plugin "fused_bias_act.cu": Preprocessing... Loading... Done.
Setting up TensorFlow plugin "upfirdn_2d.cu": Preprocessing... Loading... Done.
Traceback (most recent call last):
File "culture_shock.py", line 107, in
base_speed = base_frames / sum(audio['Instrumental']**2)
KeyError: 'Instrumental'