Skip to content

Instantly share code, notes, and snippets.

@svdamani
Last active August 19, 2024 07:51
Show Gist options
  • Save svdamani/1015c5c4b673c3297309 to your computer and use it in GitHub Desktop.
Save svdamani/1015c5c4b673c3297309 to your computer and use it in GitHub Desktop.
Natural Cubic Spline Interpolation in C
/** Numerical Analysis 9th ed - Burden, Faires (Ch. 3 Natural Cubic Spline, Pg. 149) */
#include <stdio.h>
int main() {
/** Step 0 */
int n, i, j;
scanf("%d", &n);
n--;
float x[n + 1], a[n + 1], h[n], A[n], l[n + 1],
u[n + 1], z[n + 1], c[n + 1], b[n], d[n];
for (i = 0; i < n + 1; ++i) scanf("%f", &x[i]);
for (i = 0; i < n + 1; ++i) scanf("%f", &a[i]);
/** Step 1 */
for (i = 0; i <= n - 1; ++i) h[i] = x[i + 1] - x[i];
/** Step 2 */
for (i = 1; i <= n - 1; ++i)
A[i] = 3 * (a[i + 1] - a[i]) / h[i] - 3 * (a[i] - a[i - 1]) / h[i - 1];
/** Step 3 */
l[0] = 1;
u[0] = 0;
z[0] = 0;
/** Step 4 */
for (i = 1; i <= n - 1; ++i) {
l[i] = 2 * (x[i + 1] - x[i - 1]) - h[i - 1] * u[i - 1];
u[i] = h[i] / l[i];
z[i] = (A[i] - h[i - 1] * z[i - 1]) / l[i];
}
/** Step 5 */
l[n] = 1;
z[n] = 0;
c[n] = 0;
/** Step 6 */
for (j = n - 1; j >= 0; --j) {
c[j] = z[j] - u[j] * c[j + 1];
b[j] = (a[j + 1] - a[j]) / h[j] - h[j] * (c[j + 1] + 2 * c[j]) / 3;
d[j] = (c[j + 1] - c[j]) / (3 * h[j]);
}
/** Step 7 */
printf("%2s %8s %8s %8s %8s\n", "i", "ai", "bi", "ci", "di");
for (i = 0; i < n; ++i)
printf("%2d %8.2f %8.2f %8.2f %8.2f\n", i, a[i], b[i], c[i], d[i]);
return 0;
}
@csukuangfj
Copy link

@ekalkan
thank you for the link.

@csukuangfj
Copy link

@ivanfe639
👍

@svdamani
Copy link
Author

Thanks @ivanfe639 and @ekalkan, corrected the code in 28th line and updated the book link.

@hashim-vgr
Copy link

hashim-vgr commented Apr 13, 2023

Thanks a lot for the code,
I modified it so that it can interpolate an array of 'n' values to an array of 'x' values.

#include <stdio.h>
#define CURRENT_NUMBER_OF_POINTS 40
#define NUMBER_INTERPOLATED_POINTS 2000
int main() {
/** Step 0 */
int n=CURRENT_NUMBER_OF_POINTS, i, j;

n--;
float x[n + 1], a[n + 1], h[n], A[n], l[n + 1],
        u[n + 1], z[n + 1], c[n + 1], b[n], d[n];
printf("enter values of points\n");
for (i = 0; i < n + 1; ++i) scanf("%f", &a[i]);


for (i = 0; i < n + 1; ++i) x[i]=i;

/** Step 1 */
for (i = 0; i <= n - 1; ++i) h[i] = x[i + 1] - x[i];

/** Step 2 */
for (i = 1; i <= n - 1; ++i)
    A[i] = 3 * (a[i + 1] - a[i]) / h[i] - 3 * (a[i] - a[i - 1]) / h[i - 1];

/** Step 3 */
l[0] = 1;
u[0] = 0;
z[0] = 0;

/** Step 4 */
for (i = 1; i <= n - 1; ++i) {
    l[i] = 2 * (x[i + 1] - x[i-1]) - h[i - 1] * u[i - 1];
    u[i] = h[i] / l[i];
    z[i] = (A[i] - h[i - 1] * z[i - 1]) / l[i];
}

/** Step 5 */
l[n] = 1;
z[n] = 0;
c[n] = 0;

/** Step 6 */
for (j = n - 1; j >= 0; --j) {
    c[j] = z[j] - u[j] * c[j + 1];
    b[j] = (a[j + 1] - a[j]) / h[j] - h[j] * (c[j + 1] + 2 * c[j]) / 3;
    d[j] = (c[j + 1] - c[j]) / (3 * h[j]);
}

/** Step 7 */
float interpolated_x[NUMBER_INTERPOLATED_POINTS];

/* Evaluate cubic spline equation at interpolated x values*/
for (i = 0; i < NUMBER_INTERPOLATED_POINTS; ++i) {
float x_val = (float)i * n / (float)(NUMBER_INTERPOLATED_POINTS - 1);
int j = (int)x_val;
float dx = x_val - j;
interpolated_x[i] = a[j] + b[j]dx + c[j]dxdx + d[j]dxdxdx;
}

    for (int i = 0; i < NUMBER_INTERPOLATED_POINTS; i++) {
        printf( "%d == %f \n", i,interpolated_x[i]);
    }
 
return 0;

}

@Pin09091
Copy link

Hey so im making a hyper specific library for matlab, to use in a project, is it fine if i use this? and if i do then how should i credit you?

@Pin09091
Copy link

after testing it a bunch, if you want to use the values in a polynomial to find out querry points, a , b , c and d are in the reverse order,

i compared it to here : https://www.bragitoff.com/2018/02/cubic-spline-piecewise-interpolation-c-program/?unapproved=60552&moderation-hash=d514da745560ff352ee385453b9346e1#comment-60552

@svdamani
Copy link
Author

svdamani commented Aug 19, 2024

Hey so im making a hyper specific library for matlab, to use in a project, is it fine if i use this? and if i do then how should i credit you?

@Pin09091 yes of course. Feel free to use it, mention link to the gist of my name. I'm glad this code is useful for you

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment