$ cd /path/to/Dockerfile
$ sudo docker build .
View running processes
def from_sklearn(docs,vect,lda,**kwargs): | |
"""Create Prepared Data from sklearn's vectorizer and Latent Dirichlet | |
Application | |
Parameters | |
---------- | |
docs : Pandas Series. | |
Documents to be passed as an input. | |
vect : Scikit-Learn Vectorizer (CountVectorizer,TfIdfVectorizer). |
Map | Action |
---|---|
<F1> | Causes Netrw to issue help |
<cr> | Netrw will enter the directory or read the file |
<del> | Netrw will attempt to remove the file/directory |
- | Makes Netrw go up one directory |
a | Toggles between normal display, hiding (suppress display of files matching g:netrw_list_hide) showing (display only files which match g:netrw_list_hide) |
c | Make browsing directory the current directory |
C | Setting the editing window |
d | Make a directory |
#!/usr/bin/env bash | |
#Code adapted from https://gist.github.com/yangj1e/3641843c758201ebbc6c (Modified to Python3.5) | |
cd ~ | |
#wget https://3230d63b5fc54e62148e-c95ac804525aac4b6dba79b00b39d1d3.ssl.cf1.rackcdn.com/Anaconda2-2.4.0-Linux-x86_64.sh | |
wget https://3230d63b5fc54e62148e-c95ac804525aac4b6dba79b00b39d1d3.ssl.cf1.rackcdn.com/Anaconda3-2.4.1-Linux-x86_64.sh | |
bash Anaconda3-2.4.1-Linux-x86_64.sh -b | |
echo 'PATH="/home/ubuntu/anaconda3/bin:$PATH"' >> .bashrc | |
. .bashrc |
This hit #rstats
today:
Has anyone made a dumbbell dot plot in #rstats, or better yet exported to @plotlygraphs using the API? https://t.co/rWUSpH1rRl
— Ken Davis (@ken_mke) October 23, 2015
<script async src="//platform.twitter.com/widgets.js" charset="utf-8"></script>
So, I figured it was worth a cpl mins to reproduce.
While the US gov did give the data behind the chart it was all the data and a pain to work with so I used WebPlotDigitizer to transcribe the points and then some data wrangling in R to clean it up and make it work well with ggplot2.
It is possible to make the top "dumbbell" legend in ggplot2 (but not by using a guide) and color the "All Metro A
""" | |
Minimal character-level Vanilla RNN model. Written by Andrej Karpathy (@karpathy) | |
BSD License | |
""" | |
import numpy as np | |
# data I/O | |
data = open('input.txt', 'r').read() # should be simple plain text file | |
chars = list(set(data)) | |
data_size, vocab_size = len(data), len(chars) |
########################################## | |
# To run: | |
# curl -sSL https://gist.githubusercontent.com/sirkkalap/e87cd580a47b180a7d32/raw/d9c9ebae4f5cf64eed4676e8aedac265b5a51bfa/Install-Docker-on-Linux-Mint.sh | bash -x | |
########################################## | |
# Check that HTTPS transport is available to APT | |
if [ ! -e /usr/lib/apt/methods/https ]; then | |
sudo apt-get update | |
sudo apt-get install -y apt-transport-https | |
fi |
import json | |
import urlparse | |
from itertools import chain | |
flatten = chain.from_iterable | |
from nltk import word_tokenize | |
from gensim.corpora import Dictionary | |
from gensim.models.ldamodel import LdaModel | |
from gensim.models.tfidfmodel import TfidfModel |