英題:Fluentd Hacking Guide
30分しかないため斜線部分は今回省く
- Fluentd の起動シーケンスとプラグインの読み込み
Fluentd の設定ファイルのパース- Input Plugin から Output Plugin にデータが渡る流れ
class PurchaseApprover | |
# Implements the chain of responsibility pattern. Does not know anything | |
# about the approval process, merely whether the current handler can approve | |
# the request, or must pass it to a successor. | |
attr_reader :successor | |
def initialize successor | |
@successor = successor | |
end |
function householder!(x) | |
x[1] = x[1] + sign(x[1]) .* norm(x) | |
x ./= norm(x); | |
end | |
function tridiag_qr(T) | |
Q = eye(size(T)...) | |
R = copy(T) | |
for i in 1:(size(R, 1) - 1) |
# Place the following in your home directory at ~/.numpy-site.cfg | |
# in order to install numpy with openblas support | |
[openblas] | |
libraries = openblas | |
library_dirs = /usr/local/opt/openblas/lib | |
include_dirs = /usr/local/opt/openblas/include |
Chrome 上で reveal.js で作成したスライドを pdf 化する手順メモ
出力された pdf を確認し、リンクが表示されていないなど表示がおかしい場合は以下の事を試す(ここからが本題)
reveal.js/out.html の document.write している行をコメントアウトし、css/print/pdf.css を直接追加。
# (C) Mathieu Blondel, November 2013 | |
# License: BSD 3 clause | |
import numpy as np | |
from scipy.linalg import svd | |
def frequent_directions(A, ell, verbose=False): | |
""" | |
Return the sketch of matrix A. |
更新: | 2013-11-01 |
---|---|
バージョン: | 0.0.1 |
作者: | @voluntas |
URL: | http://voluntas.github.io/ |
概要
This is a quick attempt at writing a ball tree for nearest neighbor searches using numba. I've included a pure python version, and a version with numba jit decorators. Because class support in numba is not yet complete, all the code is factored out to stand-alone functions in the numba version. The resulting code produced by numba is about ~10 times slower than the cython ball tree in scikit-learn. My guess is that part of this stems from lack of inlining in numba, while the rest is due to some sort of overhead
""" | |
Some python code for | |
Markov Chain Monte Carlo and Gibs sampling | |
by Bruce Walsh | |
""" | |
import numpy as np | |
import numpy.linalg as npla |