# list all PCI devices lspci
# Find the nvidia package
$ whereis nvidia
nvidia: /usr/lib/nvidia /usr/share/nvidia
# download nvidia-smi
frmo typing import Dict, Union | |
import xarray as xr | |
import pandas as pd | |
from pathlib import Path | |
def save_scaler(scaler: Dict[str, Union[xr.Dataset, pd.DataFrame]], run_dir: Path) -> None: | |
"""Save scaler to disk as separate netcdf files""" | |
scaler_dir = run_dir / "train_data" | |
for k, v in scaler.items(): |
conda create -n env_0721 --yes | |
conda activate env_0721 | |
conda install -c conda-forge xarray=0.18.2 pandas=1.1.4 numpy=1.20.2 | |
conda install pytorch torchvision -c pytorch --yes | |
conda install -c conda-forge seaborn=0.11 --yes | |
conda install -c conda-forge netcdf4 numba tqdm jupyterlab tensorboard ipython pip ruamel.yaml descartes statsmodels scikit-learn black mypy --yes | |
pip install geopandas | |
ipython --pdb -c "import torch; assert torch.cuda.is_available(); print(torch.backends.cudnn.version()); print(torch.cuda.device_count());" |
conda create -n old_ml | |
conda activate old_ml | |
conda install -c conda-forge xarray=0.16.2 pandas=1.2.4 numpy=1.19.2 --yes | |
conda install pytorch torchvision -c pytorch --yes | |
conda install -c conda-forge seaborn=0.11 --yes | |
conda install -c conda-forge netcdf4 numba tqdm jupyterlab tensorboard ipython pip ruamel.yaml descartes statsmodels scikit-learn black mypy --yes | |
pip install geopandas | |
ipython --pdb -c "import torch; assert torch.cuda.is_available(); print(torch.backends.cudnn.version()); print(torch.cuda.device_count());" |
# conda xesmf | |
conda create -n xesmf python=3.7 --yes | |
conda activate xesmf | |
conda install -c conda-forge xesmf rasterio --yes | |
conda install -c anaconda boto3 --yes | |
conda install pytorch torchvision -c pytorch --yes | |
conda install -c conda-forge dask netcdf4 numba tqdm jupyterlab ipython pip ruamel.yaml descartes scikit-learn black mypy --yes |
#!/bin/bash | |
# Institut für Wetter- und Klimakommunikation GmbH / Qmet | |
# O. Maywald <[email protected]> | |
# This should install CDO with grib2, netcdf and HDF5 support. Note that the binaries are in ~/cdo_install/bin. | |
# For further information look: | |
# http://www.studytrails.com/blog/install-climate-data-operator-cdo-with-netcdf-grib2-and-hdf5-support/ | |
# docker-command |
conda create -n w2w python=3.8 --yes | |
conda activate w2w | |
conda install -c conda-forge pytorch xarray=0.16 pytorch torchvision cudatoolkit --yes | |
conda install dask --yes | |
conda install -c conda-forge rasterio scikit-image --yes | |
conda install -c conda-forge seaborn=0.11 --yes | |
conda install -c anaconda networkx --yes | |
conda install -c conda-forge zarr gcsfs netcdf4 numba tqdm jupyterlab tensorboard ipython pip ruamel.yaml descartes statsmodels scikit-learn black mypy --yes | |
conda install -c conda-forge geopandas --yes | |
conda install -c conda-forge cdsapi --yes |
# https://serverfault.com/a/241593 | |
ssh-keygen -t rsa -b 2048 | |
# copy keys to target server | |
ssh-copy-id username@server_address | |
# check login | |
ssh username@server_address |
# list all PCI devices lspci
# Find the nvidia package
$ whereis nvidia
nvidia: /usr/lib/nvidia /usr/share/nvidia
# download nvidia-smi
conda create -n xr python=3.8 --yes | |
conda activate xr | |
conda install -c conda-forge pytorch xarray=0.16 pytorch torchvision cudatoolkit --yes | |
conda install -c conda-forge seaborn=0.11 --yes | |
conda install -c conda-forge netcdf4 numba tqdm jupyterlab tensorboard ipython pip ruamel.yaml descartes statsmodels scikit-learn black mypy --yes | |
pip install geopandas |
conda create -n cwat --yes | |
conda activate cwat | |
conda install -c conda-forge gdal --yes | |
conda install -c conda-forge pyflow --yes | |
conda install -c conda-forge seaborn scipy netcdf4 numba tqdm jupyterlab tensorboard ipython pip ruamel.yaml xarray descartes scikit-learn black mypy --yes | |
pip install geopandas | |
ipython --pdb -c "from osgeo import gdal; from osgeo import osr; import scipy; import xarray as xr" |