Each of these commands will run an ad hoc http static server in your current (or specified) directory, available at http://localhost:8000. Use this power wisely.
$ python -m SimpleHTTPServer 8000
This is free and unencumbered software released into the public domain. | |
Anyone is free to copy, modify, publish, use, compile, sell, or | |
distribute this software, either in source code form or as a compiled | |
binary, for any purpose, commercial or non-commercial, and by any | |
means. | |
In jurisdictions that recognize copyright laws, the author or authors | |
of this software dedicate any and all copyright interest in the | |
software to the public domain. We make this dedication for the benefit |
Each of these commands will run an ad hoc http static server in your current (or specified) directory, available at http://localhost:8000. Use this power wisely.
$ python -m SimpleHTTPServer 8000
""" | |
Minimal character-level Vanilla RNN model. Written by Andrej Karpathy (@karpathy) | |
BSD License | |
""" | |
import numpy as np | |
# data I/O | |
data = open('input.txt', 'r').read() # should be simple plain text file | |
chars = list(set(data)) | |
data_size, vocab_size = len(data), len(chars) |
import tensorflow as tf | |
import numpy as np | |
import os | |
import zconfig | |
import utils | |
class RBM(object): |
lvars | |
LVar's | |
LVars | |
elseif | |
EuroSys | |
tuples | |
Karpinski | |
Blandy's | |
multi | |
Amr |
""" | |
A weighted version of categorical_crossentropy for keras (2.0.6). This lets you apply a weight to unbalanced classes. | |
@url: https://gist.github.com/wassname/ce364fddfc8a025bfab4348cf5de852d | |
@author: wassname | |
""" | |
from keras import backend as K | |
def weighted_categorical_crossentropy(weights): | |
""" | |
A weighted version of keras.objectives.categorical_crossentropy | |
#!/usr/bin/env python | |
# -*- coding: utf-8 -*- | |
from __future__ import print_function | |
__author__ = 'maxim' | |
import numpy as np | |
import gensim | |
import string |
import matplotlib.pyplot as plt | |
import keras.backend as K | |
from keras.callbacks import Callback | |
class LRFinder(Callback): | |
''' | |
A simple callback for finding the optimal learning rate range for your model + dataset. | |