This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import torch | |
import torch.nn as nn | |
from torch.nn import functional as F | |
from torch.autograd import Variable | |
from torch import optim | |
import numpy as np | |
import math, random | |
# Generating a noisy multi-sin wave |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import torch | |
import torchvision | |
import torch.nn as nn | |
import torch.nn.functional as F | |
import torchvision.transforms as transforms | |
import matplotlib.pyplot as plt | |
import numpy as np | |
import torch.optim as optim | |
from torch.autograd import Variable |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import operator | |
import threading | |
from functools import reduce | |
import keras | |
import keras.backend as K | |
from keras.engine import Model | |
import numpy as np | |
import tensorflow as tf | |
import time |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#Source code with the blog post at http://monik.in/a-noobs-guide-to-implementing-rnn-lstm-using-tensorflow/ | |
import numpy as np | |
import random | |
from random import shuffle | |
import tensorflow as tf | |
from tensorflow.models.rnn import rnn_cell | |
from tensorflow.models.rnn import rnn | |
NUM_EXAMPLES = 10000 |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
upstream myapp { | |
server 127.0.0.1:8081; | |
} | |
limit_req_zone $binary_remote_addr zone=login:10m rate=1r/s; | |
server { | |
listen 443 ssl spdy; | |
server_name _; | |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from __future__ import print_function | |
import numpy as np | |
from keras.callbacks import Callback | |
from keras.layers import Dense | |
from keras.layers import LSTM | |
from keras.models import Sequential | |
from numpy.random import choice | |
from utils import prepare_sequences |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
""" | |
The most simple DNS client written for Python with asyncio: | |
* Only A record is support (no CNAME, no AAAA, no MX, etc.) | |
* Almost no error handling | |
* Doesn't support fragmented UDP packets (is it possible?) | |
""" | |
import asyncio | |
import logging |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#Source code with the blog post at http://monik.in/a-noobs-guide-to-implementing-rnn-lstm-using-tensorflow/ | |
import numpy as np | |
import random | |
from random import shuffle | |
import tensorflow as tf | |
# from tensorflow.models.rnn import rnn_cell | |
# from tensorflow.models.rnn import rnn | |
NUM_EXAMPLES = 10000 |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
'''This script goes along the blog post | |
"Building powerful image classification models using very little data" | |
from blog.keras.io. | |
It uses data that can be downloaded at: | |
https://www.kaggle.com/c/dogs-vs-cats/data | |
In our setup, we: | |
- created a data/ folder | |
- created train/ and validation/ subfolders inside data/ | |
- created cats/ and dogs/ subfolders inside train/ and validation/ | |
- put the cat pictures index 0-999 in data/train/cats |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
'''This script goes along the blog post | |
"Building powerful image classification models using very little data" | |
from blog.keras.io. | |
It uses data that can be downloaded at: | |
https://www.kaggle.com/c/dogs-vs-cats/data | |
In our setup, we: | |
- created a data/ folder | |
- created train/ and validation/ subfolders inside data/ | |
- created cats/ and dogs/ subfolders inside train/ and validation/ | |
- put the cat pictures index 0-999 in data/train/cats |