Skip to content

Instantly share code, notes, and snippets.

import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
x_label0 = np.random.normal(5,1,10)
x_label1 = np.random.normal(2,1,10)
xs = np.append(x_label0, x_label1)
labels = [0.] * len(x_label0) + [1.] * len(x_label1)
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
learning_rate = 0.001
training_epochs = 1000
reg_lambda = 0.
x_dataset = np.linspace(-1, 1, 100)
num_coeffs = 9
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os.path
import re
import sys
import numpy as np
import tensorflow as tf
private void setContent(){
String tag = "";
int i;
for(i = 0 ; i <mTagLists.size(); i++){
tag += "#" + mTagLists.get(i) + " ";
}
ArrayList<int[]> hashtagSpans = getSpans(tag, '#');
SpannableString tagsContent = new SpannableString(tag);
public class Hashtag extends ClickableSpan {
public interface ClickEventListener{
void onClickEvent(String data);
}
private ClickEventListener mClickEventListener = null;
private Context context;
private TextPaint textPaint;
public class CircleTransform implements Transformation {
@Override
public Bitmap transform(Bitmap source) {
int size = Math.min(source.getWidth(), source.getHeight());
int x = (source.getWidth() - size) / 2;
int y = (source.getHeight() - size) / 2;
Bitmap squaredBitmap = Bitmap.createBitmap(source, x, y, size, size);
private CallbackManager mCallbackManager;
private AccessToken mToken = null;
@Override
protected void onCreate(Bundle savedInstanceState){
super.onCreate(savedInstanceState);
FacebokSdk.sdkInitialize(getApplicationContext());
mCallbackManager = CallbackManager.Factory.create();
mToken = AccessToken.getCurrentAccessToken();
import os,sys
import Image
size = 256, 256
for (path, dirname,files) in os.walk(sys.argv[1]):
for f in files:
ext = os.path.splitext(f)
upper_ext = ext[1].upper()
outfile = os.path.join(path, '/root/output', ext[0] + '_256x256' + upper_ext)
import tensorflow as tf
import sys
sys.path.append("/root/work/deep/code/01_mnist_beginning")
import input_data
import numpy
import math
import time
NUM_CLASSES = 10
IMAGE_SIZE = 28
def createDataSet():
dataSet = [[1,1,'yes'], [1,1,'yes'], [1,0,'no'], [0,1,'no'], [0,1,'no']]
labels = ['no surfacing', 'flippers']
return dataSet, labels
def majorityCnt(classList):
classCount={}
for vote in classList:
if vote not in classCount.keys():
classCount[vote] = 0