Skip to content

Instantly share code, notes, and snippets.

import pickle
import random
import numpy as np
import tensorflow as tf
import matplotlib.pyplot as plt
%matplotlib inline
def unpickle(file):
fo = open(file, 'rb')
dict = pickle.load(fo)
import pickle
import random
import numpy as np
import tensorflow as tf
import matplotlib.pyplot as plt
%matplotlib inline
def unpickle(file):
fo = open(file, 'rb')
dict = pickle.load(fo)
from yahoo_finance import Share
import matplotlib.pyplot as plt
import numpy as np
import tensorflow as tf
import random
%matplotlib inline
class DecisionPolicy:
def select_action(self, current_state, step):
pass
import pickle
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
def unpickle(file):
fo = open(file, 'rb')
dict = pickle.load(fo)
fo.close()
return dict
import numpy as np
import tensorflow as tf
from sklearn import datasets
class Autoencoder:
def __init__(self, input_dim, hidden_dim, epoch=250, batch_size=10, learning_rate=0.001):
self.epoch = epoch
self.learning_rate = learning_rate
self.batch_size = batch_size
import numpy as np
import tensorflow as tf
class HMM(object):
def __init__(self, initial_prob, trans_prob, obs_prob):
self.N = np.size(initial_prob)
self.initial_prob = initial_prob
self.trans_prob = trans_prob
self.emission = tf.constant(obs_prob)
import numpy as np
import tensorflow as tf
class HMM(object):
def __init__(self, initial_prob, trans_prob, obs_prob):
self.N = np.size(initial_prob)
self.initial_prob = initial_prob
self.trans_prob = trans_prob
self.emission = tf.constant(obs_prob)
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
def traindata():
x1_label0 = np.random.normal(1, 1, (100, 1))
x2_label0 = np.random.normal(1, 1, (100, 1))
x1_label1 = np.random.normal(5, 1, (100, 1))
x2_label1 = np.random.normal(4, 1, (100, 1))
x1_label2 = np.random.normal(8, 1, (100, 1))
import numpy as np
import tensorflow as tf
import matplotlib.pyplot as plt
%matplotlib inline
learning_rate = 0.1
training_epochs = 2000
def sigmoid(x):
return 1. / (1. + np.exp(-x))
import numpy as np
import tensorflow as tf
import matplotlib.pyplot as plt
%matplotlib inline
learning_rate = 0.01
training_epochs = 1000
def sigmoid(x):
return 1. / (1. + np.exp(-x))