In addition to this README
, this torrent contains 4 datasets:
Name | Image size (px) | Scene number | Size compressed (B) | Total size (B) |
---|---|---|---|---|
64.tar.xz |
64x64 | 80K | 9.8G | 19G |
128.tar.xz |
128x128 | 20K | 7.1G | 12G |
given
$$
import time | |
import torch | |
import torch.backends.cudnn as cudnn | |
import torch.nn.functional as F | |
from torch.autograd import Variable | |
def benchmark_shape(N, C, IH, IW, H, W, nrand, nrep): | |
""" |
from __future__ import division | |
from __future__ import print_function | |
import argparse | |
import math | |
import time | |
from tqdm import trange | |
import torch | |
from correlation_package.correlation import Correlation |
import torch, kornia, h5py, imageio | |
import matplotlib.pyplot as plt | |
import numpy as np | |
# This is a failure mode, with different aspect ratios | |
fname1 = '47698078_3766965066' | |
fname2 = '18698491_4586522698' | |
# This works | |
# fname1 = '271147142_778c4e7999_o' |