Let's say you want to host domains first.com and second.com.
Create folders for their files:
| /** | |
| * Created by leo6104 (github.com/leo6104) | |
| * You can use this nodejs script on angular v5/v4/v2 project. | |
| * 1. Place this gist file `ng-update-v6.js` to angular project's root path | |
| * 2. use command `node ng-update-v6.js .angular-cli.json` | |
| * 3. check angular.json file (created by ng-update-v6.js) | |
| **/ | |
| const fs = require('fs'); | |
| const path = require('path'); |
| const Web3 = require('web3'); | |
| const ZeroEx = require('0x.js').ZeroEx; | |
| const BigNumber = require('bignumber.js'); | |
| // Default provider for TestRPC | |
| const provider = new Web3.providers.HttpProvider('http://localhost:8545') | |
| // Calling constructor | |
| const zeroEx = new ZeroEx(provider); |
| var Web3 = require('web3'); | |
| var util = require('ethereumjs-util'); | |
| var tx = require('ethereumjs-tx'); | |
| var lightwallet = require('eth-lightwallet'); | |
| var txutils = lightwallet.txutils; | |
| var web3 = new Web3( | |
| new Web3.providers.HttpProvider('https://rinkeby.infura.io/') | |
| ); | |
| var address = '0x8D68583e625CAaE969fA9249502E105a21435EbF'; | |
| var key = '1ce642301e680f60227b9d8ffecad474f15155b6d8f8a2cb6bde8e85c8a4809a'; |
| pragma solidity ^0.4.0; | |
| contract Ballot { | |
| struct Voter { | |
| uint weight; | |
| bool voted; | |
| uint8 vote; | |
| address delegate; | |
| } | |
| struct Proposal { |
| ''' | |
| texture image path are relative to the blend file directory. run from command line like this: | |
| texture=img/2012720989_c.jpg blender -b mug.blend --python texture_change.py -F PNG -s 1 -e 1 -j 1 -t 0 -a | |
| '''' | |
| import os | |
| image_file = os.getenv('texture') | |
| if not image_file: | |
| image_file="img/2012720989_c.jpg" |
##VGG16 model for Keras
This is the Keras model of the 16-layer network used by the VGG team in the ILSVRC-2014 competition.
It has been obtained by directly converting the Caffe model provived by the authors.
Details about the network architecture can be found in the following arXiv paper:
Very Deep Convolutional Networks for Large-Scale Image Recognition
K. Simonyan, A. Zisserman
| # HED batch processing script; modified from https://github.com/s9xie/hed/blob/master/examples/hed/HED-tutorial.ipynb | |
| # Step 1: download the hed repo: https://github.com/s9xie/hed | |
| # Step 2: download the models and protoxt, and put them under {caffe_root}/examples/hed/ | |
| # Step 3: put this script under {caffe_root}/examples/hed/ | |
| # Step 4: run the following script: | |
| # python batch_hed.py --images_dir=/data/to/path/photos/ --hed_mat_dir=/data/to/path/hed_mat_files/ | |
| # The code sometimes crashes after computation is done. Error looks like "Check failed: ... driver shutting down". You can just kill the job. | |
| # For large images, it will produce gpu memory issue. Therefore, you better resize the images before running this script. | |
| # Step 5: run the MATLAB post-processing script "PostprocessHED.m" | |
| # https://github.com/phillipi/pix2pix/blob/master/scripts/edges/batch_hed.py |
This document describes how to install the combination of 14.04 + CUDA 7.5 + Tensorflow. This combination is the easiest to install without anything like compilation from sources etc.
http://releases.ubuntu.com/14.04/ http://releases.ubuntu.com/16.04/
| # install dependencies | |
| sudo apt-get update | |
| sudo apt-get install -y build-essential | |
| sudo apt-get install -y cmake | |
| sudo apt-get install -y libgtk2.0-dev | |
| sudo apt-get install -y pkg-config | |
| sudo apt-get install -y python-numpy python-dev | |
| sudo apt-get install -y libavcodec-dev libavformat-dev libswscale-dev | |
| sudo apt-get install -y libjpeg-dev libpng12-dev libtiff5-dev libjasper-dev | |